Это нужно знать

Общий перечень знаний –
на этой странице



Борьба за добротность катушки индуктивности

Как намотать высокодобротную катушку без ферритового
сердечника в радиолюбительских условиях?

Необузданные гонки за высокими параметрами добротности колебательных контуров не так просты, как могли бы показаться на первый взгляд.
На предыдущей странице, мы определились, что добротность контура в первую очередь определяется добротностью катушки индуктивности, а она в свою очередь напрямую связана с сопротивлением потерь и описывается формулой Q=2πfL/Rпот.
Сопротивление потерь – это параметр, связанный не только с потерями в проводах, но и учитывающий потери в диэлектрике, сердечнике и экране.

– Потери в сердечнике складываются из потерь на вихревые токи и потерь на гистерезис, связанных с перемагничивание материала в течение периода.
– Потери в диэлектрике обусловлены как паразитной межвитковой ёмкостью между соседними витками катушки, так и магнитными свойствами диэлектрика каркаса катушки (эти потери аналогичны потерям в сердечнике).
– Потери в экране вызываются индуцированием переменным магнитным полем вихревых ЭДС в окружающих проводниках.

Точный расчёт всех перечисленных параметров – дело весьма затруднительное, поэтому, с целью упрощения задачи, обычно учитываются только потери в проводах, как вносящие основной вклад в общую сумму потерь.
При этом применяются специальные меры по минимизации неучтённых потерь – керамические, или ребристые каркасы, бескаркасные катушки (с "воздушным" каркасом), отказ от использования сердечника.

А теперь несколько слов о выборе параметра индуктивности катушки для достижения максимальной добротности.
Глядя на формулу, описывающую величину добротности Q=2πfL/Rпот, а так же приведённую на рисунке, можно сделать преждевременный вывод – добротность катушки линейно растёт с ростом частоты и достигает максимума на частоте собственного резонанса, когда С минимальна и равна собственной паразитной ёмкости катушки и паразитных емкостей источника, нагрузки и монтажа.

Однако, не всё так просто!

Оказывается, что для достижения максимальной добротности на определённой частоте существует оптимальная величина индуктивности катушки.
При понижении частоты добротность уменьшается, но не линейно, а несколько медленнее, за счёт снижения влияния действия скин эффекта, гуляющего внутри провода, а при повышении – тоже плавно уменьшается из-за проявляющейся зависимости совокупных паразитных ёмкостей от частоты (варикапный эффект). К тому же эти паразитные ёмкости начинают доминировать в общей ёмкости колебательного контура, а образованный ими конденсатор, как известно, обладает далеко не самым выдающимся параметром добротности.

И в заключение нашего теоретического экскурса всё же не воздержусь и приведу основные факторы, определяющие сопротивление потерь в проводах катушек на высоких частотах:
1. Омическое (активное) сопротивление проводника постоянному току – классика жанра, рассчитать можно по длине и диаметру провода на странице    ссылка на страницу.
2. Поверхностный эффект, скин-эффект – эффект роста сопротивления провода с ростом частоты. Суть эффекта состоит в вытеснении тока в поверхностные слои провода, в связи с чем уменьшается полезное сечение проводника и, как следствие, растёт его сопротивление.
3. Эффект близости, суть которого состоит в вытеснении тока под воздействием вихревых токов и магнитного поля к части провода, прилегающей к каркасу. В результате сечение, по которому протекает ток, принимает серповидную форму, что ведёт к дополнительному возрастанию сопротивления проводника.

Думаю, на этом хватит!
Переходим к опытно-практической части дипломной работы: Приготовим закуски и коктейли, накроем стол... Итак, какой должна быть высокодобротная катушка:

1. Очевидно, что из металла!
Ладно, посмеялись – и будет.
Нам нужен металл с минимальным удельным сопротивлением и с максимально возможным (в пределах разумного) диаметром проводника.
На начальном уровне – медь, на продвинутом – медь с серебряным напылением.

2. Катушка должна быть большой! Опять же, как и в первом пункте – излишний фанатизм не приветствуется.
Однако, помимо размеров катушки, пристальное внимание следует обратить и на форм-фактор – отношение длины к диаметру металлоизделия.
Опытными мотальщиками было продемонстрировано, что оптимальная по добротности катушка имеет отношение длины к диаметру L/D ≈ 1, причём изменение этого отношения в пару раз в ту, или иную сторону – к существенному изменению добротности не приводит.

3. Желание минимизировать эффект близости и уменьшить собственную ёмкость катушки сподвигло специалистов к следующему постулату: оптимальное отношение шага намотки (расстояние между центрами соседних витков) к диаметру провода равно ≈2.

4. И вот теперь главный вопрос радиолюбительства: Сколько мотать витков в оптимизированной катушке для достижения максимальной добротности?
На вопрос викторины отвечает М. Филатов, досконально изучивший этот предмет в 1976 г. на кафедре конструирования РЭА ФРиС РПИ.

   Диапазон       Параметры катушки       D каркаса   
   L, мкГн       расчётные       20 мм       30 мм       40 мм   
10 м 1,5 L нам.(мм) 10 15 20
n (вит.) 8,5 7 6
d пров.(мм) 0,84 1,5 2,4
Q 472 708 945
14 м 2,0 L нам.(мм) 12 18 24
n (вит.) 10,3 8,4 7,3
d пров.(мм) 0,8 1,46 2,2
Q 439 660 879
20 м 3,0 L нам.(мм) 12 18 24
n (вит.) 18,7 10,3 9
d пров.(мм) 0,67 1,2 1,8
Q 359 538 718
40 м 6,0 L нам.(мм) 14 21 28
n (вит.) 18,7 15,2 13,2
d пров.(мм) 0,53 0,66 1,46
Q 270 406 542
80 м 12,0 L нам.(мм) 14 21 28
n (вит.) 26,4 21,5 18,6
d пров.(мм) 0,37 0,66 1,0
Q 191 287 382
160 м 24,0 L нам.(мм) 16 24 32
n (вит.) 39 32 27,5
d пров.(мм) 0,31 0,53 0,8
Q 144 216 288

Данная таблица дошла до наших взоров благодаря стараниям латвийского радиолюбителя Юрия Балтина (YL2DX), опубликовавшим её в далёком 2003 году на своём сайте http://dx.ardi.lv, за что ему большое человеческое спасибо!

Таблица эта – не догма и не абсолютная истина в последней инстанции, однако она позволяет достаточно наглядно пронаблюдать зависимость параметра добротности катушки индуктивности от диаметра каркаса и толщины провода, а заодно и оценить оптимальное значение индуктивности для того или иного частотного диапазона.
Поэтому, если Вы всё-таки озадачились намоткой высокодобротного изделия, вооружайтесь информацией, изложенной на этой странице, доступным каркасом, или оправкой для бескаркасной катушки и бодро шагайте на сайт coil32.ru, где вы найдёте бесплатную, но очень хорошую программу для расчёта катушек индуктивности, а заодно и массу полезной теоретической информации по всему, что касается разнообразных намоточных изделий.

А на следующей странице будем мотать высокодобротные катушки на ферритовых кольцах, а также на кольцах из распылённого железа.




      Назад        Дальше      

 

Главная страница | Наши разработки | Полезные схемы | Это нужно знать | Вопросы-ответы | Весёлый перекур
© 2017 Vpayaem.ru   All Rights Reserved

     
     

Борьба за добротность катушки индуктивности

Как намотать высокодобротную катушку без ферритового
сердечника в радиолюбительских условиях?

Необузданные гонки за высокими параметрами добротности колебательных контуров не так просты, как могли бы показаться на первый взгляд.
На предыдущей странице, мы определились, что добротность контура в первую очередь определяется добротностью катушки индуктивности, а она в свою очередь напрямую связана с сопротивлением потерь и описывается формулой Q=2πfL/Rпот.
Сопротивление потерь – это параметр, связанный не только с потерями в проводах, но и учитывающий потери в диэлектрике, сердечнике и экране.

– Потери в сердечнике складываются из потерь на вихревые токи и потерь на гистерезис, связанных с перемагничивание материала в течение периода.
– Потери в диэлектрике обусловлены как паразитной межвитковой ёмкостью между соседними витками катушки, так и магнитными свойствами диэлектрика каркаса катушки (эти потери аналогичны потерям в сердечнике).
– Потери в экране вызываются индуцированием переменным магнитным полем вихревых ЭДС в окружающих проводниках.

Точный расчёт всех перечисленных параметров – дело весьма затруднительное, поэтому, с целью упрощения задачи, обычно учитываются только потери в проводах, как вносящие основной вклад в общую сумму потерь.
При этом применяются специальные меры по минимизации неучтённых потерь – керамические, или ребристые каркасы, бескаркасные катушки (с "воздушным" каркасом), отказ от использования сердечника.

А теперь несколько слов о выборе параметра индуктивности катушки для достижения максимальной добротности.
Глядя на формулу, описывающую величину добротности Q=2πfL/Rпот, а так же приведённую на рисунке, можно сделать преждевременный вывод – добротность катушки линейно растёт с ростом частоты и достигает максимума на частоте собственного резонанса, когда С минимальна и равна собственной паразитной ёмкости катушки и паразитных емкостей источника, нагрузки и монтажа.

Однако, не всё так просто!

Оказывается, что для достижения максимальной добротности на определённой частоте существует оптимальная величина индуктивности катушки.
При понижении частоты добротность уменьшается, но не линейно, а несколько медленнее, за счёт снижения влияния действия скин эффекта, гуляющего внутри провода, а при повышении – тоже плавно уменьшается из-за проявляющейся зависимости совокупных паразитных ёмкостей от частоты (варикапный эффект). К тому же эти паразитные ёмкости начинают доминировать в общей ёмкости колебательного контура, а образованный ими конденсатор, как известно, обладает далеко не самым выдающимся параметром добротности.

И в заключение нашего теоретического экскурса всё же не воздержусь и приведу основные факторы, определяющие сопротивление потерь в проводах катушек на высоких частотах:
1. Омическое (активное) сопротивление проводника постоянному току – классика жанра, рассчитать можно по длине и диаметру провода на странице    ссылка на страницу.
2. Поверхностный эффект, скин-эффект – эффект роста сопротивления провода с ростом частоты. Суть эффекта состоит в вытеснении тока в поверхностные слои провода, в связи с чем уменьшается полезное сечение проводника и, как следствие, растёт его сопротивление.
3. Эффект близости, суть которого состоит в вытеснении тока под воздействием вихревых токов и магнитного поля к части провода, прилегающей к каркасу. В результате сечение, по которому протекает ток, принимает серповидную форму, что ведёт к дополнительному возрастанию сопротивления проводника.

Думаю, на этом хватит!
Переходим к опытно-практической части дипломной работы: Приготовим закуски и коктейли, накроем стол... Итак, какой должна быть высокодобротная катушка:

1. Очевидно, что из металла!
Ладно, посмеялись – и будет.
Нам нужен металл с минимальным удельным сопротивлением и с максимально возможным (в пределах разумного) диаметром проводника.
На начальном уровне – медь, на продвинутом – медь с серебряным напылением.

2. Катушка должна быть большой! Опять же, как и в первом пункте – излишний фанатизм не приветствуется.
Однако, помимо размеров катушки, пристальное внимание следует обратить и на форм-фактор – отношение длины к диаметру металлоизделия.
Опытными мотальщиками было продемонстрировано, что оптимальная по добротности катушка имеет отношение длины к диаметру L/D ≈ 1, причём изменение этого отношения в пару раз в ту, или иную сторону – к существенному изменению добротности не приводит.

3. Желание минимизировать эффект близости и уменьшить собственную ёмкость катушки сподвигло специалистов к следующему постулату: оптимальное отношение шага намотки (расстояние между центрами соседних витков) к диаметру провода равно ≈2.

4. И вот теперь главный вопрос радиолюбительства: Сколько мотать витков в оптимизированной катушке для достижения максимальной добротности?
На вопрос викторины отвечает М. Филатов, досконально изучивший этот предмет в 1976 г. на кафедре конструирования РЭА ФРиС РПИ.

   Диапазон       Параметры катушки       D каркаса   
   L, мкГн       расчётные       20 мм       30 мм       40 мм   
10 м 1,5 L нам.(мм) 10 15 20
n (вит.) 8,5 7 6
d пров.(мм) 0,84 1,5 2,4
Q 472 708 945
14 м 2,0 L нам.(мм) 12 18 24
n (вит.) 10,3 8,4 7,3
d пров.(мм) 0,8 1,46 2,2
Q 439 660 879
20 м 3,0 L нам.(мм) 12 18 24
n (вит.) 18,7 10,3 9
d пров.(мм) 0,67 1,2 1,8
Q 359 538 718
40 м 6,0 L нам.(мм) 14 21 28
n (вит.) 18,7 15,2 13,2
d пров.(мм) 0,53 0,66 1,46
Q 270 406 542
80 м 12,0 L нам.(мм) 14 21 28
n (вит.) 26,4 21,5 18,6
d пров.(мм) 0,37 0,66 1,0
Q 191 287 382
160 м 24,0 L нам.(мм) 16 24 32
n (вит.) 39 32 27,5
d пров.(мм) 0,31 0,53 0,8
Q 144 216 288

Данная таблица дошла до наших взоров благодаря стараниям латвийского радиолюбителя Юрия Балтина (YL2DX), опубликовавшим её в далёком 2003 году на своём сайте http://dx.ardi.lv, за что ему большое человеческое спасибо!

Таблица эта – не догма и не абсолютная истина в последней инстанции, однако она позволяет достаточно наглядно пронаблюдать зависимость параметра добротности катушки индуктивности от диаметра каркаса и толщины провода, а заодно и оценить оптимальное значение индуктивности для того или иного частотного диапазона.
Поэтому, если Вы всё-таки озадачились намоткой высокодобротного изделия, вооружайтесь информацией, изложенной на этой странице, доступным каркасом, или оправкой для бескаркасной катушки и бодро шагайте на сайт coil32.ru, где вы найдёте бесплатную, но очень хорошую программу для расчёта катушек индуктивности, а заодно и массу полезной теоретической информации по всему, что касается разнообразных намоточных изделий.

А на следующей странице будем мотать высокодобротные катушки на ферритовых кольцах, а также на кольцах из распылённого железа.




      Назад        Дальше      

  ==================================================================