Свежие новости
17.08.2018 Не так уж и сложно – "Универсальное зарядное устрой- ство для любых типов аккумуля- торных батарей с номинальными напряжениями 1,5...24В, ёмкостью 0,3...200Ач".

Все остальные новости обитают на главной странице



Автоматическое импульсное зарядное устройство на ИМС TL494

Универсальное зарядное устройство для любых типов аккумуля- торных батарей с номинальными напряжениями 1,5...24В и ёмкостью 0,3...200Ач

Заряд аккумуляторной батареи – это некий химический процесс, в ходе которого аккумулятор принимает в себя часть электрической энергии, прибывающей из сетевой розетки. Обряд несложный, однако имеет нюансы и несколько отличается от церемонии зарядки воды денежными символами и звездой Эрцгаммы.

Наиболее широко распространены два способа заряда аккумуляторов: 1 – при постоянном зарядном токе и 2 – при постоянном напряжении.
Первый из них мы достаточно легко и непринуждённо реализовали в мощном бестрансформаторном ЗУ, описанным на странице  ссылка на страницу , второй – рассмотрим в рамках этой статьи.

Итак, заряд постоянным напряжением.
При данном способе напряжение на выходе ЗУ поддерживается постоянным в течении всего времени заряда. В результате, в связи с постепенным увеличением внутреннего сопротивления батареи, зарядный ток убывает в течение процесса от максимального до практически нулевого.
При этом, без специальных защитных схемных решений, сила тока в начальный момент заряда может достигать весьма опасных для АКБ величин – 100-150% от номинальной ёмкости аккумулятора. Чтобы батарея в этот момент не крякнула от неожиданности, в мощные зарядники обязательно вводят ограничитель тока (≈ 50% ёмкости АКБ).

Стало быть, нам нужно серьёзно озадачиться устройством, выдающим в сухом остатке: регулируемое в диапазоне 1,5-24В постоянное напряжение, выходной ток вплоть до 20А и содержащим узел защиты, ограничивающий этот ток величиной, заранее задаваемой юзером.
К тому же, при таких весомых мощностях повиснет в воздухе вопрос, касающийся параметра КПД, а также массогабаритных характеристик зарядного устройства.

Исходя из сложившейся ситуации, делаем широкомасштабный вывод: блок питания должен быть импульсным, стабилизатор напряжения и регулятор тока – тоже.

Начнём с конца и приведём схему электрическую принципиальную регулируемого стабилизатора напряжения с ограничителем тока.

Рис.1 Схема автоматического импульсного зарядного устройства на TL494

В основе схемы стабилизатора лежит интегральная микросхема TL494, представляющая из себя ШИМ контроллер, вполне комфортно себя чувствующий в схемах управления блоков питания.

При полном отсутствии желания выпендриться и бить себя по темечку, считая себя умнее создателей ИМС, было решено на 100% следовать схеме включения микросхемы, приведённой в качестве примера 10А блока питания в Datasheet-е производителя.

Частота колебаний внутреннего генератора, задаётся элементами R6, С2 и составляет 20кГц.
Внешний биполярный транзистор был заменён на мощный p-канальный полевик Т3, обладающий значительно более высоким параметром КПД при работе в ключевых приложениях.
Двухтактный эмиттерный повторитель на транзисторах Т1-Т2 предназначен для прокачки значительной входной ёмкости полевого транзистора.
Делитель, образованный резисторами R9, R10, ограничивает максимальное напряжение Uзи Т3 на допустимом уровне -15В.

Как это всё работает?
Выходное напряжение (+Uвых) через делитель, образованный переменным резистором R13, поступает на неинвертирующий вход (1IN+) встроенного в ИМС усилителя ошибки и сравнивается с опорным напряжением 1,5В, присутствующем на инвертирующем входе (1IN-).
Если это напряжение ниже опорного, контроллер даёт команду на увеличение длительности выходных импульсов, если выше – на уменьшение. Таким образом происходит стабилизация выходного напряжения на уровне Uвых = 1,5×Kдел, где Kдел – коэффициент деления переменника R13.
Таким образом, в верхнем (по схеме) положении ползунка R13 Kдел=1, и выходное напряжение зафиксируется на уровне 1,5В, в нижнем – Kдел=∞, а это означает, что всё питающее напряжение через постоянно открытый ключ попадёт в нагрузку.

Теперь, что касается ограничения выходного тока.
Минусовой вывод нагрузки, как видно из схемы, подключается к земле не напрямую, а через резисторы мелкого номинала R16 (при выходных токах до 2А), либо R15IIR16 (при токах 2-20А).
Ясен хроматограф, что напряжение, падающее на этих резисторах, будет прямо пропорционально протекающему через нагрузку току.
Далее это напряжение усиливается операционным усилителем DA2, а следом поступает на неинвертирующий вход (2IN+) второго усилителя ошибки, где сравнивается с опорным напряжением 1В на инвертирующем входе (2IN-). Последующий механизм реакции микросхемы на соотношение входного и опорного сигналов аналогичен предыдущему описанию, за исключением того, что второй усилитель включён в режиме компаратора, и изменения выходного уровня происходят скачкообразно с частотой, определяемой постоянной времени интегрирующей цепочки R25 С8.

Итак. Ограничение тока происходит в момент появления на выходе DA2 напряжения уровнем 1В. Переключаемые резисторы R17-R24, отвечающие за коэффициент усиления операционного усилителя, как раз и определяют момент появление этого выходного уровня, в зависимости от тока, протекающего через нагрузку.

Приведу пример. Допустим, нам надо ограничить ток в нагрузке значением 1А. При таком токе на резисторе R16 образуется напряжение 0,1(Ом)×1(А)=0,1(В), т.е. для получения напряжения на выходе операционника 1В, нам надо усилить это значение в 10 раз.
Выбираем переключателем R19.
DA2 у нас работает в неинвертирующем режиме, поэтому его Ku=1+91(кОм)/10(кОм)=10,1 раз.
С приемлемой точностью результат получен.

Поскольку мы с Вами задумали зарядное устройство, а не блок питания РЭА, к пульсациям на выходе устройства можно отнестись вполне индифферентно, поверьте, точно также к ним отнесётся и подопытный АКБ. Поэтому решительно отказываемся от дросселя номиналом 140мкГн, приведённом в Datasheet-е, в пользу моточного изделия индуктивностью 50мкГн, и так размеры кольца для 20-ти амперных токов получатся весьма недетскими.
А именно. Без опасения загнать сердечник в насыщение следует использовать кольца из распылённого железа типоразмера Т130 и материалов смесей 52 (салатовый/голубой), либо 40 (салатовый/жёлтый), либо 26 (жёлтый/белый), склеить их в количестве 3-ёх штук, намотать 15-18 витков вчетверо сложенных проводов диаметром 1,5мм.
Использовать низкочастотные ферриты без пропила для создания малого воздушного зазора – дело весьма распространённое среди "умельцев", но абсолютно бессмысленное.

Переходим к схеме собственно самого источника питания, обеспечивающего нам 30-вольтовое напряжение при токе нагрузки 20А.
Автоматическое импульсное зарядное устройство на ИМС TL494
Автоматическое импульсное зарядное устройство на ИМС TL494
Рис.2 Схема импульсного источника питания (30В, 20А)

Схемы, приведённые на Рис.2, обмусолены нами, истолкованы вдоль и поперёк на нескольких страницах, начиная с  ссылка на страницу, поэтому ограничусь лишь описанием трансформатора Tr1.

Импульсный трансформатор намотан на низкочастотном ферритовом кольце 2000НМ размерами 40×25×22мм.
Первичная обмотка содержит 30 витков обмоточного провода диаметром 1,5мм,
Вторичная – 6 витков сложенных вдвое проводов диаметром 2мм, либо вчетверо сложенных проводов диаметром 1,5мм.


 

Главная страница | Наши разработки | Полезные схемы | Это нужно знать | Вопросы-ответы | Весёлый перекур
© 2017 Vpayaem.ru   All Rights Reserved

     
     

Автоматическое импульсное зарядное устройство на ИМС TL494

Универсальное зарядное устройство для любых типов аккумуля- торных батарей с номинальными напряжениями 1,5...24В и ёмкостью 0,3...200Ач

Заряд аккумуляторной батареи – это некий химический процесс, в ходе которого аккумулятор принимает в себя часть электрической энергии, прибывающей из сетевой розетки. Обряд несложный, однако имеет нюансы и несколько отличается от церемонии зарядки воды денежными символами и звездой Эрцгаммы.

Наиболее широко распространены два способа заряда аккумуляторов: 1 – при постоянном зарядном токе и 2 – при постоянном напряжении.
Первый из них мы достаточно легко и непринуждённо реализовали в мощном бестрансформаторном ЗУ, описанным на странице  ссылка на страницу , второй – рассмотрим в рамках этой статьи.

Итак, заряд постоянным напряжением.
При данном способе напряжение на выходе ЗУ поддерживается постоянным в течении всего времени заряда. В результате, в связи с постепенным увеличением внутреннего сопротивления батареи, зарядный ток убывает в течение процесса от максимального до практически нулевого.
При этом, без специальных защитных схемных решений, сила тока в начальный момент заряда может достигать весьма опасных для АКБ величин – 100-150% от номинальной ёмкости аккумулятора. Чтобы батарея в этот момент не крякнула от неожиданности, в мощные зарядники обязательно вводят ограничитель тока (≈ 50% ёмкости АКБ).

Стало быть, нам нужно серьёзно озадачиться устройством, выдающим в сухом остатке: регулируемое в диапазоне 1,5-24В постоянное напряжение, выходной ток вплоть до 20А и содержащим узел защиты, ограничивающий этот ток величиной, заранее задаваемой юзером.
К тому же, при таких весомых мощностях повиснет в воздухе вопрос, касающийся параметра КПД, а также массогабаритных характеристик зарядного устройства.

Исходя из сложившейся ситуации, делаем широкомасштабный вывод: блок питания должен быть импульсным, стабилизатор напряжения и регулятор тока – тоже.

Начнём с конца и приведём схему электрическую принципиальную регулируемого стабилизатора напряжения с ограничителем тока.

Рис.1 Схема автоматического импульсного зарядного устройства на TL494

В основе схемы стабилизатора лежит интегральная микросхема TL494, представляющая из себя ШИМ контроллер, вполне комфортно себя чувствующий в схемах управления блоков питания.

При полном отсутствии желания выпендриться и бить себя по темечку, считая себя умнее создателей ИМС, было решено на 100% следовать схеме включения микросхемы, приведённой в качестве примера 10А блока питания в Datasheet-е производителя.

Частота колебаний внутреннего генератора, задаётся элементами R6, С2 и составляет 20кГц.
Внешний биполярный транзистор был заменён на мощный p-канальный полевик Т3, обладающий значительно более высоким параметром КПД при работе в ключевых приложениях.
Двухтактный эмиттерный повторитель на транзисторах Т1-Т2 предназначен для прокачки значительной входной ёмкости полевого транзистора.
Делитель, образованный резисторами R9, R10, ограничивает максимальное напряжение Uзи Т3 на допустимом уровне -15В.

Как это всё работает?
Выходное напряжение (+Uвых) через делитель, образованный переменным резистором R13, поступает на неинвертирующий вход (1IN+) встроенного в ИМС усилителя ошибки и сравнивается с опорным напряжением 1,5В, присутствующем на инвертирующем входе (1IN-).
Если это напряжение ниже опорного, контроллер даёт команду на увеличение длительности выходных импульсов, если выше – на уменьшение. Таким образом происходит стабилизация выходного напряжения на уровне Uвых = 1,5×Kдел, где Kдел – коэффициент деления переменника R13.
Таким образом, в верхнем (по схеме) положении ползунка R13 Kдел=1, и выходное напряжение зафиксируется на уровне 1,5В, в нижнем – Kдел=∞, а это означает, что всё питающее напряжение через постоянно открытый ключ попадёт в нагрузку.

Теперь, что касается ограничения выходного тока.
Минусовой вывод нагрузки, как видно из схемы, подключается к земле не напрямую, а через резисторы мелкого номинала R16 (при выходных токах до 2А), либо R15IIR16 (при токах 2-20А).
Ясен хроматограф, что напряжение, падающее на этих резисторах, будет прямо пропорционально протекающему через нагрузку току.
Далее это напряжение усиливается операционным усилителем DA2, а следом поступает на неинвертирующий вход (2IN+) второго усилителя ошибки, где сравнивается с опорным напряжением 1В на инвертирующем входе (2IN-). Последующий механизм реакции микросхемы на соотношение входного и опорного сигналов аналогичен предыдущему описанию, за исключением того, что второй усилитель включён в режиме компаратора, и изменения выходного уровня происходят скачкообразно с частотой, определяемой постоянной времени интегрирующей цепочки R25 С8.

Итак. Ограничение тока происходит в момент появления на выходе DA2 напряжения уровнем 1В. Переключаемые резисторы R17-R24, отвечающие за коэффициент усиления операционного усилителя, как раз и определяют момент появление этого выходного уровня, в зависимости от тока, протекающего через нагрузку.

Приведу пример. Допустим, нам надо ограничить ток в нагрузке значением 1А. При таком токе на резисторе R16 образуется напряжение 0,1(Ом)×1(А)=0,1(В), т.е. для получения напряжения на выходе операционника 1В, нам надо усилить это значение в 10 раз.
Выбираем переключателем R19.
DA2 у нас работает в неинвертирующем режиме, поэтому его Ku=1+91(кОм)/10(кОм)=10,1 раз.
С приемлемой точностью результат получен.

Поскольку мы с Вами задумали зарядное устройство, а не блок питания РЭА, к пульсациям на выходе устройства можно отнестись вполне индифферентно, поверьте, точно также к ним отнесётся и подопытный АКБ. Поэтому решительно отказываемся от дросселя номиналом 140мкГн, приведённом в Datasheet-е, в пользу моточного изделия индуктивностью 50мкГн, и так размеры кольца для 20-ти амперных токов получатся весьма недетскими.
А именно. Без опасения загнать сердечник в насыщение следует использовать кольца из распылённого железа типоразмера Т130 и материалов смесей 52 (салатовый/голубой), либо 40 (салатовый/жёлтый), либо 26 (жёлтый/белый), склеить их в количестве 3-ёх штук, намотать 15-18 витков вчетверо сложенных проводов диаметром 1,5мм.
Использовать низкочастотные ферриты без пропила для создания малого воздушного зазора – дело весьма распространённое среди "умельцев", но абсолютно бессмысленное.

Переходим к схеме собственно самого источника питания, обеспечивающего нам 30-вольтовое напряжение при токе нагрузки 20А.
Автоматическое импульсное зарядное устройство на ИМС TL494
Автоматическое импульсное зарядное устройство на ИМС TL494
Рис.2 Схема импульсного источника питания (30В, 20А)

Схемы, приведённые на Рис.2, обмусолены нами, истолкованы вдоль и поперёк на нескольких страницах, начиная с  ссылка на страницу, поэтому ограничусь лишь описанием трансформатора Tr1.

Импульсный трансформатор намотан на низкочастотном ферритовом кольце 2000НМ размерами 40×25×22мм.
Первичная обмотка содержит 30 витков обмоточного провода диаметром 1,5мм,
Вторичная – 6 витков сложенных вдвое проводов диаметром 2мм, либо вчетверо сложенных проводов диаметром 1,5мм.


  ==================================================================