Перечень схем

Общий перечень всех схем находится на  этой странице



Металлоискатели, они же металлодетекторы: принципы работы и схемы

BFO металлоискатели на биениях, металлоискатели по принципу электронного частотомера, импульсные металлоискатели.
Оптимальные частоты излучения

Металлоискатель, он же металлодетектор - это электронное устройство (прибор), позволяющее обнаруживать металлические предметы в нейтральной или слабопроводящей среде за счёт наличия у этих предметов электрической проводимости.
Так, а кой же должна быть эта слабопроводящая среда, если мы знаем, что практически все материалы в той или иной степени проводят ток?
Ну, как минимум, на несколько порядков ниже, чем проводимость металлов. Золотой портсигар внутри танка, затонувшего в болоте, мы, само собой, не отыщем, а вот какую-нибудь железяку в грунте, воде, стене, древесине, чемодане, в чьём-либо организме, в конце концов, и т. д. и т. п. - это пожалуйста, добро пожаловать на металлодетекторное обследование.

Теперь - по какому принципу работают металлоискатели (металлодетекторы)?
Этих принципов работы несколько:

Металлоискатель по принципу "передача-приём" непрерывным сигналом.

Тут всё понятно и соответствует названию: Передающая катушка непрерывно стреляется переменным электро-магнитным полем в искомый металлический предмет, оказавший поблизости.
Под влиянием этого поля в предмете, выступающем в роли мишени, возникают электрические токи, которые, в свою очередь, создают собственное магнитное поле, с направленностью обратной магнитному полю передатчика.
Приёмная катушка регистрирует отражённый (или, как говорят, переизлучённый) от металлического предмета (мишени) сигнал. Далее этот сигнал усиливается и обрабатывается электроникой, предварительно отделив его от более мощного сигнала передатчика.
Чем больше предмет и чем он ближе расположен к катушкам, тем выше будет амплитуда переизлучённого сигнала.
Прибор данного типа подразумевают наличие как минимум двух катушек, одна из которых является передающей, а другая, приёмной. Мало того, необходимо позаботиться о таком выборе взаимного расположения катушек, при котором магнитное поле излучающей катушки в отсутствие посторонних металлических предметов наводит минимальный (в идеале - нулевой) сигнал в приёмной катушке (или в системе приёмных катушек).
Катушки металлоискателя
Рис.1

Существуют различные варианты взаимного расположения катушек, при которых не происходит непосредственной передачи сигнала из одной катушки в другую. Основные из них: катушки с перпендикулярными осями (Рис.1, а и б), а также вариант расположения приёмной катушки, скрученной в форме восьмёрки, внутри передающей (Рис.1 в).

Поскольку конструкция данных типов металлоискателей достаточно сложна, так как подразумевает наличие отдельных катушек на приём и передачу, широкого распространения в радиолюбительской практике она не нашла.

Совсем другое дело - металлоискатели, построенные на принципе биений, или так называемые BFO металлоискатели.

Принцип действия металлоискателя на биениях заключается в регистрации разности частот от двух генераторов, один из которых является стабильным по частоте, а другой содержит датчик - поисковую катушку индуктивности в своей частотозадающей цепи.
Прибор настраивается таким образом, чтобы в отсутствие металла вблизи датчика частоты двух генераторов совпадали или были очень близки по значению. Наличие металла вблизи датчика приводит к изменению индуктивности датчика и, как следствие, к изменению частоты соответствующего генератора. Это изменение, приведёт к изменению разностной частоты двух генераторов, которая выделяется специальным устройством (смесителем), на входы которого подаются сигналы обоих генераторов, а на выходе выделяется разностная частота, называемая частотой биений.
Разность частот может регистрироваться самыми различными путями, начиная от простейшего, когда сигнал разностной частоты прослушивается на головные телефоны, и кончая цифровыми способами измерения частоты.
Диапазоны рабочих частот BFO металлоискателей - 40-500 кГц.
При отсутствии металла в поле поисковой катушки разностная частота должна быть в пределах 500...1000 Гц.

В качестве примера приведу схему простейшего компактного металлоискателя на микросхеме К175ЛЕ5 (Источник Яворский В. Металлоискатель на К176ЛЕ5. // Радио, 1999, №8, с. 65).

Схема металлоискателя
Рис.2

Схема содержит два генератора (опорный и поисковый). Поисковый генератор собран на элементах DD1.1, DD1.2, а опорный – на элементах DD1.3 и DD1.4.
Переменным резистором R2 плавно изменяют частоту поискового генератора в диапазоне частот, установленном подстроечным резистором R1. Частота генератора на элементах DD1.3 и DD1.4 зависит от параметров колебательного контура L1, С2.
Сигналы с обоих генераторов поступают через конденсаторы C3 и С4 на детектор, выполненный на диодах VD1 и VD2.
Нагрузкой детектора являются наушники BF1, на которых выделяется разностный сигнал в виде низкочастотной составляющей, преобразуемый наушниками в звук.
Параллельно наушникам включен конденсатор С5, который шунтирует их по высокой частоте. При приближении поисковой катушки L1 к металлическому предмету происходит изменение частоты генератора на элементах DD1.3, DD1.4, в результате меняется тональность звука в наушниках. По этому признаку и определяют, находится ли в зоне поиска металлический предмет.

Схема металлоискателя Схема металлоискателя
Рис.3

Катушка L1 размещается в кольце диаметром 200 мм, согнутом из медной или алюминиевой трубки с внутренним диаметром 8 мм. Между концами трубки должен быть небольшой изолированный зазор, чтобы не было короткозамкнутого витка. Катушка наматывается проводом ПЭЛШО 0,5. Через трубку необходимо протянуть любым способом максимальное число витков: чем больше, тем лучше.

Несмотря на бытующее мнение, что BFO металлоискатели не имеют чёткой селективности различных видов металлов, при наличии некоторого опыта, данным типом устройств можно-таки производить селекцию, анализируя и отфильтровывая сигналы на слух.

В теории чувствительность BFO металлоискателей должна быть таком же уровне, как и у устройств, построенных по принципу "передача-приём". Однако существует существенная проблема, снижающая чувствительность приборов данного типа. Проблема заключается в том, что два генератора, настроенные на очень близкие частоты, имеют тенденцию к паразитной взаимной синхронизации. А это, в свою очередь, не даёт возможности работы на низких начальных разностных частотах, на которых ухо имеет максимальную чувствительность к изменению тона звукового сигнала.

И тут, лёгким движением руки, BFO металлоискатель превращается в
Металлоискатель, работающий по принципу электронного частотомера.

Построенный по такому принципу электронный металлоискатель является несомненным родственником прибора "на биениях", но в отличие от него содержит один генератор с частотозадающей поисковой катушкой, а изменение частоты фиксируется электронным устройством, работающим по принципу частотомера. Помимо повышения чувствительности приборы данного класса, обладают и возможностью оценки знака приращения частоты, а соответственно и возможностью селекции чёрных/цветных металлов.

Простейшую реализацию подобной конструкции без селектора видов металлов предложил Адаменко М.В. в книге "Металлоискатели".
Схема металлоискателя
Рис.4

Предлагаемая конструкция является устройством, в основу которого положен принцип анализа девиации частоты опорного генератора под влиянием металлических предметов, попавших в зону действия поисковой катушки. Главными отличительными особенностями данного прибора можно считать интересное схемотехническое решение анализатора, выполненного на кварцевом элементе Q1, а также использование в качестве индикатора стрелочного прибора.

Основу схемы рассматриваемого металлодетектора (Рис.4) составляют измерительный генератор, буферный каскад, анализатор, детектор высокочастотных колебаний и индикаторное устройство.
Колебательный контур генератора высокой частоты, выполненного на транзисторе Т1, состоит из катушки L1 и конденсаторов С3-С6. Рабочая частота ВЧ-генератора зависит от девиации индуктивности катушки L1, которая одновременно является поисковой катушкой, а также от изменения ёмкостей подстроечного (С4) и регулировочного (С3) конденсаторов.
При отсутствии металлических предметов в зоне действия катушки L1 частота колебаний, возбуждаемых в ВЧ-генераторе, должна быть равна частоте кварцевого элемента Q1, то есть в данном случае - 1 МГц.
После того как в зоне действия поисковой катушки L1 окажется металлический предмет, её индуктивность изменится. Это приведёт к изменению частоты колебаний ВЧ-генератора. Далее сигнал ВЧ подаётся на буферный каскад, обеспечивающий согласование генератора с последующими цепями. В качестве буферного каскада используется эмиттерный повторитель, выполненный на транзисторе Т2.
С выхода эмиттерного повторителя сигнал ВЧ через регулировочный резистор R7 и кварц Q1 поступает на детектор, выполненный на диоде D2. Благодаря высокой добротности кварца малейший сдвиг частоты измерительного генератора будут приводить к уменьшению полного сопротивления кварцевого элемента. В результате на вход усилителя постоянного тока (база транзистора Т3) поступает сигнал, изменение амплитуды которого обеспечивает соответствующее отклонение стрелки индикаторного прибора.
Нагрузкой УПТ, выполненного на транзисторе Т3, является стрелочный прибор с током полного отклонения 1 мА. При замыкании выключателя S2 в цепь нагрузки включается генератор звукового сигнала, выполненный на транзисторе Т4.

Поисковая катушка L1 представляет собой кольцевую рамку, изготовленную из отрезка кабеля с внешним диаметром 8-10 мм (например, кабеля марки РК-50). Центральную жилу кабеля следует удалить, а вместо неё протянуть шесть жил провода типа ПЭЛ диаметром 0,1-0,2 мм и длиной 115 мм. Получившийся многожильный кабель необходимо согнуть на подходящей оправке в кольцо таким образом, чтобы между началом и концом образовавшейся петли остался зазор шириной примерно 25-30 мм.

Катушка металлоискателя
Рис.5

Конец провода, являющийся началом первого витка, следует припаять к экранирующей оплётке кабеля, начало второго витка - к концу первого и так далее. В результате получится катушка, содержащая шесть витков провода. При изготовлении катушки L1 нужно особенно следить за тем, чтобы не произошло замыкания концов экранирующей оплётки, поскольку в этом случае образуется короткозамкнутый виток.

Непосредственное налаживание металлодетектора следует начать с установки нужной частоты колебаний, формируемых ВЧ-генератором. Частота колебаний ВЧ должна быть равна частоте кварцевого элемента Q1. Для выполнения данной регулировки рекомендуется воспользоваться цифровым частотомером. При этом значение частоты сначала грубо устанавливается изменением ёмкости конденсатора С4, а затем точно - регулировкой конденсатора С3.
При отсутствии частотомера настройку ВЧ-генератора можно провести по показаниям индикатора PA1. Поскольку кварц Q1 является элементом связи между поисковой и индикаторной частями прибора, то его сопротивление в момент резонанса весьма велико. Таким образом, о точной настройке колебаний ВЧ-генератора на частоту кварца будет свидетельствовать минимальное показание стрелочного прибора PA1.Уровень чувствительности данного устройства регулируется резистором R8.

Ну и закончу я обзор весьма популярными среди радиолюбительского сообщества -
Импульсными металлоискателями.

Не будем отвлекаться на различные виды импульсных конструкций. Рассмотрим однокатушечный вариант с временным способом разделения излучаемого и отражённого сигналов.
После воздействия импульса магнитной индукции в искомом проводящем объекте возникает и некоторое время поддерживается (вследствие явления самоиндукции) затухающий импульс тока, обусловливающий задержанный по времени отражённый сигнал. Он и несёт полезную информацию, его и надо регистрировать.
Генератор импульсов тока формирует короткие импульсы тока миллисекундного диапазона, поступающие в излучающую катушку, где они преобразуются в импульсы магнитной индукции. Так как излучающая катушка имеет ярко выраженный индуктивный характер, всплески напряжения на ней могут достигать по амплитуде десятков-сотен вольт. В связи с этим, необходимо позаботиться: либо о блокировке входной цепи прибора на определённое время, либо об ограничении данного напряжения на входе приёмной части регистратора.
По истечении времени действия импульса тока в излучающей катушке и времени разрядки катушки в действие должен вступить блок обработки сигнала, предназначенный для преобразования входного электрического (отражённого от железяки) сигнала в удобную для восприятия человеком форму.

Приведу для примера простую и расхожую схему импульсного металлоискателя ПИРАТ.

Рис.6

Принцип работы этого металлоискателя основан на изменении времени затухания отражённого от металлического предмета импульса в поисковой катушке, которое увеличивается с приближением металлических предметов. Дискриминации в данном типе металлоискателя нет, цветной и чёрный металлы реагируют практически одинаково.
Прибор состоит из передающего блока (генератора импульсов на таймере NE555 и мощного ключа на полевом транзисторе) и приёмной части на операционном усилителе TL072.
По входу приёмника стоят встречно-параллельно включённые ограничивающие диоды, на входе второго каскада ОУ приёмника - фильтр, отсекающий импульсы, излучаемые передатчиком.
Поисковая катушка L1 намотана на оправку 180-200 мм и содержит 25-30 витков эмалированного провода диаметром 0.5-0.8 мм. Экранировать катушку не нужно.
Оптимальные параметры работы генератора на NE555 : частота 125-150 Гц, длительность импульса 125-150 мкс.
При соблюдении этих параметров аппарат потребляет минимальный ток и имеет максимальную чувствительность:
Потребляемый ток : 30-50 мА;
Чувствительность : Монета 25 мм — 20 см, крупные предметы — 150 см.
После сборки схемы наладить металлоискатель очень просто. Включаем питание и ждём окончания переходных процессов в течении 15 секунд, подбором резистора R11 добиваемся того, чтобы при среднем положении переменного резистора R12 в динамике не было слышно звука генератора, а слышались только редкие щелчки.
Поисковая катушка при настройке должна находиться вдали от металлических предметов. При приближении металла в динамике должен появляться звук с частотой работы таймера NE555.

И подытожим страницу информацией о том,
как частота металлоискателя влияет на качество поиска.

Условно частоты работы металлоискателей можно разделить следующим образом:
2-6 кГц — низкая частота;
6-15 кГц — средняя частота;
15-30 кГц — высокая частота;
от 30 кГц и выше — ну, очень высокая частота.

Низким частотам присущи следующие свойства: бóльшая способность проникать в глубину почвы, а потому и увеличенная глубина обнаружения, способность работать на почвах с высоким уровнем минерализации, способность хорошо справляться с задачей поиска целей с высокой проводимостью (медь, бронза, серебро).
Из недостатков: не очень хорошо подходят для поиска мелких объектов и поиска целей с низкой проводимостью, например, железа, никеля и т.д.

Высокие частоты обладают следующими свойствами: показывают отличные результаты при поиске мелких объектов, хорошо подходят для поиска целей с низкой проводимостью, обладают более высокой точностью, особенно при обнаружении целей, расположенных близко к поверхности.
Из недостатков можно отметить: чувствительность к помехам, создаваемым высокоминерализованным грунтом, меньшая глубина обнаружения по сравнению с низкой частотой.

Средние частоты представляют собой компромисс между низкими и высокими. Средняя частота считается универсальной, подходящей под любой тип находок, поэтому практически все бюджетные одночастотные детекторы промышленного производства обладают стандартной рабочей частотой - 6...8 кГц.

 

Главная страница | Наши разработки | Полезные схемы | Это нужно знать | Вопросы-ответы | Весёлый перекур
© 2017 Vpayaem.ru   All Rights Reserved

     
     

Металлоискатели, они же металлодетекторы: принципы работы и схемы

BFO металлоискатели на биениях, металлоискатели по принципу электронного частотомера, импульсные металлоискатели.
Оптимальные частоты излучения

Металлоискатель, он же металлодетектор - это электронное устройство (прибор), позволяющее обнаруживать металлические предметы в нейтральной или слабопроводящей среде за счёт наличия у этих предметов электрической проводимости.
Так, а кой же должна быть эта слабопроводящая среда, если мы знаем, что практически все материалы в той или иной степени проводят ток?
Ну, как минимум, на несколько порядков ниже, чем проводимость металлов. Золотой портсигар внутри танка, затонувшего в болоте, мы, само собой, не отыщем, а вот какую-нибудь железяку в грунте, воде, стене, древесине, чемодане, в чьём-либо организме, в конце концов, и т. д. и т. п. - это пожалуйста, добро пожаловать на металлодетекторное обследование.

Теперь - по какому принципу работают металлоискатели (металлодетекторы)?
Этих принципов работы несколько:

Металлоискатель по принципу "передача-приём" непрерывным сигналом.

Тут всё понятно и соответствует названию: Передающая катушка непрерывно стреляется переменным электро-магнитным полем в искомый металлический предмет, оказавший поблизости.
Под влиянием этого поля в предмете, выступающем в роли мишени, возникают электрические токи, которые, в свою очередь, создают собственное магнитное поле, с направленностью обратной магнитному полю передатчика.
Приёмная катушка регистрирует отражённый (или, как говорят, переизлучённый) от металлического предмета (мишени) сигнал. Далее этот сигнал усиливается и обрабатывается электроникой, предварительно отделив его от более мощного сигнала передатчика.
Чем больше предмет и чем он ближе расположен к катушкам, тем выше будет амплитуда переизлучённого сигнала.
Прибор данного типа подразумевают наличие как минимум двух катушек, одна из которых является передающей, а другая, приёмной. Мало того, необходимо позаботиться о таком выборе взаимного расположения катушек, при котором магнитное поле излучающей катушки в отсутствие посторонних металлических предметов наводит минимальный (в идеале - нулевой) сигнал в приёмной катушке (или в системе приёмных катушек).
Катушки металлоискателя
Рис.1

Существуют различные варианты взаимного расположения катушек, при которых не происходит непосредственной передачи сигнала из одной катушки в другую. Основные из них: катушки с перпендикулярными осями (Рис.1, а и б), а также вариант расположения приёмной катушки, скрученной в форме восьмёрки, внутри передающей (Рис.1 в).

Поскольку конструкция данных типов металлоискателей достаточно сложна, так как подразумевает наличие отдельных катушек на приём и передачу, широкого распространения в радиолюбительской практике она не нашла.

Совсем другое дело - металлоискатели, построенные на принципе биений, или так называемые BFO металлоискатели.

Принцип действия металлоискателя на биениях заключается в регистрации разности частот от двух генераторов, один из которых является стабильным по частоте, а другой содержит датчик - поисковую катушку индуктивности в своей частотозадающей цепи.
Прибор настраивается таким образом, чтобы в отсутствие металла вблизи датчика частоты двух генераторов совпадали или были очень близки по значению. Наличие металла вблизи датчика приводит к изменению индуктивности датчика и, как следствие, к изменению частоты соответствующего генератора. Это изменение, приведёт к изменению разностной частоты двух генераторов, которая выделяется специальным устройством (смесителем), на входы которого подаются сигналы обоих генераторов, а на выходе выделяется разностная частота, называемая частотой биений.
Разность частот может регистрироваться самыми различными путями, начиная от простейшего, когда сигнал разностной частоты прослушивается на головные телефоны, и кончая цифровыми способами измерения частоты.
Диапазоны рабочих частот BFO металлоискателей - 40-500 кГц.
При отсутствии металла в поле поисковой катушки разностная частота должна быть в пределах 500...1000 Гц.

В качестве примера приведу схему простейшего компактного металлоискателя на микросхеме К175ЛЕ5 (Источник Яворский В. Металлоискатель на К176ЛЕ5. // Радио, 1999, №8, с. 65).

Схема металлоискателя
Рис.2

Схема содержит два генератора (опорный и поисковый). Поисковый генератор собран на элементах DD1.1, DD1.2, а опорный – на элементах DD1.3 и DD1.4.
Переменным резистором R2 плавно изменяют частоту поискового генератора в диапазоне частот, установленном подстроечным резистором R1. Частота генератора на элементах DD1.3 и DD1.4 зависит от параметров колебательного контура L1, С2.
Сигналы с обоих генераторов поступают через конденсаторы C3 и С4 на детектор, выполненный на диодах VD1 и VD2.
Нагрузкой детектора являются наушники BF1, на которых выделяется разностный сигнал в виде низкочастотной составляющей, преобразуемый наушниками в звук.
Параллельно наушникам включен конденсатор С5, который шунтирует их по высокой частоте. При приближении поисковой катушки L1 к металлическому предмету происходит изменение частоты генератора на элементах DD1.3, DD1.4, в результате меняется тональность звука в наушниках. По этому признаку и определяют, находится ли в зоне поиска металлический предмет.

Схема металлоискателя Схема металлоискателя
Рис.3

Катушка L1 размещается в кольце диаметром 200 мм, согнутом из медной или алюминиевой трубки с внутренним диаметром 8 мм. Между концами трубки должен быть небольшой изолированный зазор, чтобы не было короткозамкнутого витка. Катушка наматывается проводом ПЭЛШО 0,5. Через трубку необходимо протянуть любым способом максимальное число витков: чем больше, тем лучше.

Несмотря на бытующее мнение, что BFO металлоискатели не имеют чёткой селективности различных видов металлов, при наличии некоторого опыта, данным типом устройств можно-таки производить селекцию, анализируя и отфильтровывая сигналы на слух.

В теории чувствительность BFO металлоискателей должна быть таком же уровне, как и у устройств, построенных по принципу "передача-приём". Однако существует существенная проблема, снижающая чувствительность приборов данного типа. Проблема заключается в том, что два генератора, настроенные на очень близкие частоты, имеют тенденцию к паразитной взаимной синхронизации. А это, в свою очередь, не даёт возможности работы на низких начальных разностных частотах, на которых ухо имеет максимальную чувствительность к изменению тона звукового сигнала.

И тут, лёгким движением руки, BFO металлоискатель превращается в
Металлоискатель, работающий по принципу электронного частотомера.

Построенный по такому принципу электронный металлоискатель является несомненным родственником прибора "на биениях", но в отличие от него содержит один генератор с частотозадающей поисковой катушкой, а изменение частоты фиксируется электронным устройством, работающим по принципу частотомера. Помимо повышения чувствительности приборы данного класса, обладают и возможностью оценки знака приращения частоты, а соответственно и возможностью селекции чёрных/цветных металлов.

Простейшую реализацию подобной конструкции без селектора видов металлов предложил Адаменко М.В. в книге "Металлоискатели".
Схема металлоискателя
Рис.4

Предлагаемая конструкция является устройством, в основу которого положен принцип анализа девиации частоты опорного генератора под влиянием металлических предметов, попавших в зону действия поисковой катушки. Главными отличительными особенностями данного прибора можно считать интересное схемотехническое решение анализатора, выполненного на кварцевом элементе Q1, а также использование в качестве индикатора стрелочного прибора.

Основу схемы рассматриваемого металлодетектора (Рис.4) составляют измерительный генератор, буферный каскад, анализатор, детектор высокочастотных колебаний и индикаторное устройство.
Колебательный контур генератора высокой частоты, выполненного на транзисторе Т1, состоит из катушки L1 и конденсаторов С3-С6. Рабочая частота ВЧ-генератора зависит от девиации индуктивности катушки L1, которая одновременно является поисковой катушкой, а также от изменения ёмкостей подстроечного (С4) и регулировочного (С3) конденсаторов.
При отсутствии металлических предметов в зоне действия катушки L1 частота колебаний, возбуждаемых в ВЧ-генераторе, должна быть равна частоте кварцевого элемента Q1, то есть в данном случае - 1 МГц.
После того как в зоне действия поисковой катушки L1 окажется металлический предмет, её индуктивность изменится. Это приведёт к изменению частоты колебаний ВЧ-генератора. Далее сигнал ВЧ подаётся на буферный каскад, обеспечивающий согласование генератора с последующими цепями. В качестве буферного каскада используется эмиттерный повторитель, выполненный на транзисторе Т2.
С выхода эмиттерного повторителя сигнал ВЧ через регулировочный резистор R7 и кварц Q1 поступает на детектор, выполненный на диоде D2. Благодаря высокой добротности кварца малейший сдвиг частоты измерительного генератора будут приводить к уменьшению полного сопротивления кварцевого элемента. В результате на вход усилителя постоянного тока (база транзистора Т3) поступает сигнал, изменение амплитуды которого обеспечивает соответствующее отклонение стрелки индикаторного прибора.
Нагрузкой УПТ, выполненного на транзисторе Т3, является стрелочный прибор с током полного отклонения 1 мА. При замыкании выключателя S2 в цепь нагрузки включается генератор звукового сигнала, выполненный на транзисторе Т4.

Поисковая катушка L1 представляет собой кольцевую рамку, изготовленную из отрезка кабеля с внешним диаметром 8-10 мм (например, кабеля марки РК-50). Центральную жилу кабеля следует удалить, а вместо неё протянуть шесть жил провода типа ПЭЛ диаметром 0,1-0,2 мм и длиной 115 мм. Получившийся многожильный кабель необходимо согнуть на подходящей оправке в кольцо таким образом, чтобы между началом и концом образовавшейся петли остался зазор шириной примерно 25-30 мм.

Катушка металлоискателя
Рис.5

Конец провода, являющийся началом первого витка, следует припаять к экранирующей оплётке кабеля, начало второго витка - к концу первого и так далее. В результате получится катушка, содержащая шесть витков провода. При изготовлении катушки L1 нужно особенно следить за тем, чтобы не произошло замыкания концов экранирующей оплётки, поскольку в этом случае образуется короткозамкнутый виток.

Непосредственное налаживание металлодетектора следует начать с установки нужной частоты колебаний, формируемых ВЧ-генератором. Частота колебаний ВЧ должна быть равна частоте кварцевого элемента Q1. Для выполнения данной регулировки рекомендуется воспользоваться цифровым частотомером. При этом значение частоты сначала грубо устанавливается изменением ёмкости конденсатора С4, а затем точно - регулировкой конденсатора С3.
При отсутствии частотомера настройку ВЧ-генератора можно провести по показаниям индикатора PA1. Поскольку кварц Q1 является элементом связи между поисковой и индикаторной частями прибора, то его сопротивление в момент резонанса весьма велико. Таким образом, о точной настройке колебаний ВЧ-генератора на частоту кварца будет свидетельствовать минимальное показание стрелочного прибора PA1.Уровень чувствительности данного устройства регулируется резистором R8.

Ну и закончу я обзор весьма популярными среди радиолюбительского сообщества -
Импульсными металлоискателями.

Не будем отвлекаться на различные виды импульсных конструкций. Рассмотрим однокатушечный вариант с временным способом разделения излучаемого и отражённого сигналов.
После воздействия импульса магнитной индукции в искомом проводящем объекте возникает и некоторое время поддерживается (вследствие явления самоиндукции) затухающий импульс тока, обусловливающий задержанный по времени отражённый сигнал. Он и несёт полезную информацию, его и надо регистрировать.
Генератор импульсов тока формирует короткие импульсы тока миллисекундного диапазона, поступающие в излучающую катушку, где они преобразуются в импульсы магнитной индукции. Так как излучающая катушка имеет ярко выраженный индуктивный характер, всплески напряжения на ней могут достигать по амплитуде десятков-сотен вольт. В связи с этим, необходимо позаботиться: либо о блокировке входной цепи прибора на определённое время, либо об ограничении данного напряжения на входе приёмной части регистратора.
По истечении времени действия импульса тока в излучающей катушке и времени разрядки катушки в действие должен вступить блок обработки сигнала, предназначенный для преобразования входного электрического (отражённого от железяки) сигнала в удобную для восприятия человеком форму.

Приведу для примера простую и расхожую схему импульсного металлоискателя ПИРАТ.

Рис.6

Принцип работы этого металлоискателя основан на изменении времени затухания отражённого от металлического предмета импульса в поисковой катушке, которое увеличивается с приближением металлических предметов. Дискриминации в данном типе металлоискателя нет, цветной и чёрный металлы реагируют практически одинаково.
Прибор состоит из передающего блока (генератора импульсов на таймере NE555 и мощного ключа на полевом транзисторе) и приёмной части на операционном усилителе TL072.
По входу приёмника стоят встречно-параллельно включённые ограничивающие диоды, на входе второго каскада ОУ приёмника - фильтр, отсекающий импульсы, излучаемые передатчиком.
Поисковая катушка L1 намотана на оправку 180-200 мм и содержит 25-30 витков эмалированного провода диаметром 0.5-0.8 мм. Экранировать катушку не нужно.
Оптимальные параметры работы генератора на NE555 : частота 125-150 Гц, длительность импульса 125-150 мкс.
При соблюдении этих параметров аппарат потребляет минимальный ток и имеет максимальную чувствительность:
Потребляемый ток : 30-50 мА;
Чувствительность : Монета 25 мм — 20 см, крупные предметы — 150 см.
После сборки схемы наладить металлоискатель очень просто. Включаем питание и ждём окончания переходных процессов в течении 15 секунд, подбором резистора R11 добиваемся того, чтобы при среднем положении переменного резистора R12 в динамике не было слышно звука генератора, а слышались только редкие щелчки.
Поисковая катушка при настройке должна находиться вдали от металлических предметов. При приближении металла в динамике должен появляться звук с частотой работы таймера NE555.

И подытожим страницу информацией о том,
как частота металлоискателя влияет на качество поиска.

Условно частоты работы металлоискателей можно разделить следующим образом:
2-6 кГц — низкая частота;
6-15 кГц — средняя частота;
15-30 кГц — высокая частота;
от 30 кГц и выше — ну, очень высокая частота.

Низким частотам присущи следующие свойства: бóльшая способность проникать в глубину почвы, а потому и увеличенная глубина обнаружения, способность работать на почвах с высоким уровнем минерализации, способность хорошо справляться с задачей поиска целей с высокой проводимостью (медь, бронза, серебро).
Из недостатков: не очень хорошо подходят для поиска мелких объектов и поиска целей с низкой проводимостью, например, железа, никеля и т.д.

Высокие частоты обладают следующими свойствами: показывают отличные результаты при поиске мелких объектов, хорошо подходят для поиска целей с низкой проводимостью, обладают более высокой точностью, особенно при обнаружении целей, расположенных близко к поверхности.
Из недостатков можно отметить: чувствительность к помехам, создаваемым высокоминерализованным грунтом, меньшая глубина обнаружения по сравнению с низкой частотой.

Средние частоты представляют собой компромисс между низкими и высокими. Средняя частота считается универсальной, подходящей под любой тип находок, поэтому практически все бюджетные одночастотные детекторы промышленного производства обладают стандартной рабочей частотой - 6...8 кГц.

  ==================================================================