Металлоискатели, они же металлодетекторы: принципы работы и схемы
BFO металлоискатели на биениях, металлоискатели по принципу электронного частотомера, импульсные металлоискатели.
Оптимальные частоты излучения
Металлоискатель, он же металлодетектор - это электронное устройство (прибор), позволяющее обнаруживать металлические предметы в
нейтральной или слабопроводящей среде за счёт наличия у этих предметов электрической проводимости.
Так, а кой же должна быть эта слабопроводящая среда, если мы знаем, что практически все материалы в той или иной степени проводят ток?
Ну, как минимум, на несколько порядков ниже, чем проводимость металлов. Золотой портсигар внутри танка, затонувшего в болоте, мы,
само собой, не отыщем, а вот какую-нибудь железяку в грунте, воде, стене, древесине, чемодане,
в чьём-либо организме, в конце концов, и т. д. и т. п. - это пожалуйста, добро пожаловать на металлодетекторное обследование.
Теперь - по какому принципу работают металлоискатели (металлодетекторы)?
Этих принципов работы несколько:
Металлоискатель по принципу "передача-приём" непрерывным сигналом.
Тут всё понятно и соответствует названию:
Передающая катушка непрерывно стреляется переменным электро-магнитным полем в искомый металлический предмет, оказавший поблизости.
Под влиянием этого поля в предмете, выступающем в роли мишени, возникают электрические токи, которые, в свою очередь,
создают собственное магнитное поле, с направленностью обратной магнитному полю передатчика.
Приёмная катушка регистрирует отражённый (или, как говорят, переизлучённый) от металлического предмета (мишени) сигнал.
Далее этот сигнал усиливается и обрабатывается электроникой, предварительно отделив его от более мощного сигнала передатчика.
Чем больше предмет и чем он ближе расположен к катушкам, тем выше будет амплитуда переизлучённого сигнала.
Прибор данного типа подразумевают наличие как минимум двух катушек, одна из которых является передающей, а другая, приёмной.
Мало того, необходимо позаботиться о таком выборе взаимного расположения катушек, при котором магнитное поле излучающей катушки
в отсутствие посторонних металлических предметов наводит минимальный (в идеале - нулевой) сигнал в приёмной катушке
(или в системе приёмных катушек).
Рис.1
Существуют различные варианты взаимного расположения катушек, при которых не происходит непосредственной передачи сигнала из одной катушки
в другую. Основные из них: катушки с перпендикулярными осями (Рис.1, а и б), а также вариант расположения приёмной катушки, скрученной
в форме восьмёрки, внутри передающей (Рис.1 в).
Поскольку конструкция данных типов металлоискателей достаточно сложна, так как подразумевает наличие отдельных катушек на приём
и передачу, широкого распространения в радиолюбительской практике она не нашла.
Совсем другое дело - металлоискатели, построенные на принципе биений, или так называемые BFO металлоискатели.
Принцип действия металлоискателя на биениях заключается в регистрации разности частот от двух генераторов,
один из которых является стабильным по частоте, а другой содержит датчик - поисковую катушку индуктивности в своей частотозадающей цепи.
Прибор настраивается таким образом, чтобы в отсутствие металла вблизи датчика частоты двух генераторов совпадали или были очень близки
по значению.
Наличие металла вблизи датчика приводит к изменению индуктивности датчика и, как следствие, к изменению частоты соответствующего
генератора. Это изменение, приведёт к изменению разностной частоты двух генераторов, которая выделяется специальным устройством
(смесителем), на входы которого подаются сигналы обоих генераторов, а на выходе выделяется разностная частота, называемая частотой биений.
Разность частот может регистрироваться самыми различными путями, начиная от простейшего, когда сигнал разностной частоты прослушивается
на головные телефоны, и кончая цифровыми способами измерения частоты.
Диапазоны рабочих частот BFO металлоискателей - 40-500 кГц.
При отсутствии металла в поле поисковой катушки разностная частота должна быть в пределах 500...1000 Гц.
В качестве примера приведу схему простейшего компактного металлоискателя на микросхеме К175ЛЕ5 (Источник Яворский В.
Металлоискатель на К176ЛЕ5. // Радио, 1999, №8, с. 65).
Рис.2
Схема содержит два генератора (опорный и поисковый). Поисковый генератор собран на элементах DD1.1, DD1.2, а опорный – на элементах
DD1.3 и DD1.4.
Переменным резистором R2 плавно изменяют частоту поискового генератора в диапазоне частот, установленном подстроечным резистором R1.
Частота генератора на элементах DD1.3 и DD1.4 зависит от параметров колебательного контура L1, С2.
Сигналы с обоих генераторов поступают через конденсаторы C3 и С4 на детектор, выполненный на диодах
VD1 и VD2.
Нагрузкой детектора являются наушники BF1, на которых выделяется разностный сигнал в виде низкочастотной составляющей,
преобразуемый наушниками в звук.
Параллельно наушникам включен конденсатор С5, который шунтирует их по высокой частоте. При приближении поисковой катушки L1 к
металлическому предмету происходит изменение частоты генератора на элементах DD1.3, DD1.4, в результате меняется тональность
звука в наушниках. По этому признаку и определяют, находится ли в зоне поиска металлический предмет.
Рис.3
Катушка L1 размещается в кольце диаметром 200 мм, согнутом из медной или алюминиевой трубки с внутренним диаметром 8 мм.
Между концами трубки должен быть небольшой изолированный зазор, чтобы не было короткозамкнутого витка. Катушка наматывается проводом
ПЭЛШО 0,5.
Через трубку необходимо протянуть любым способом максимальное число витков: чем больше, тем лучше.
Несмотря на бытующее мнение, что BFO металлоискатели не имеют чёткой селективности различных видов металлов, при наличии
некоторого опыта, данным типом устройств можно-таки производить селекцию, анализируя и отфильтровывая сигналы на слух.
В теории чувствительность BFO металлоискателей должна быть таком же уровне, как и у устройств, построенных по принципу "передача-приём".
Однако существует существенная проблема, снижающая чувствительность приборов данного типа.
Проблема заключается в том, что два генератора, настроенные на очень близкие частоты, имеют тенденцию к паразитной взаимной синхронизации.
А это, в свою очередь, не даёт возможности работы на низких начальных разностных частотах, на которых ухо имеет максимальную
чувствительность к изменению тона звукового сигнала.
И тут, лёгким движением руки, BFO металлоискатель превращается в Металлоискатель, работающий по принципу электронного
частотомера.
Построенный по такому принципу электронный металлоискатель является несомненным родственником прибора "на биениях", но в отличие от
него содержит один генератор с частотозадающей поисковой катушкой, а изменение частоты фиксируется электронным устройством, работающим
по принципу частотомера. Помимо повышения чувствительности приборы данного класса, обладают и возможностью оценки знака приращения
частоты, а соответственно и возможностью селекции чёрных/цветных металлов.
Простейшую реализацию подобной конструкции без селектора видов металлов предложил Адаменко М.В. в книге "Металлоискатели".
Рис.4
Предлагаемая конструкция является устройством, в основу которого положен принцип анализа девиации частоты опорного генератора
под влиянием металлических предметов, попавших в зону действия поисковой катушки. Главными отличительными особенностями данного
прибора можно считать интересное схемотехническое решение анализатора, выполненного на кварцевом элементе Q1, а также
использование в качестве индикатора стрелочного прибора.
Основу схемы рассматриваемого металлодетектора (Рис.4) составляют
измерительный генератор, буферный каскад, анализатор, детектор высокочастотных колебаний и индикаторное устройство.
Колебательный контур генератора высокой частоты, выполненного на транзисторе Т1, состоит из катушки L1 и конденсаторов С3-С6.
Рабочая частота ВЧ-генератора зависит от девиации индуктивности катушки L1, которая одновременно является поисковой катушкой,
а также от изменения ёмкостей подстроечного (С4) и регулировочного (С3) конденсаторов.
При отсутствии металлических предметов в зоне действия катушки L1 частота колебаний, возбуждаемых в ВЧ-генераторе, должна быть
равна частоте кварцевого элемента Q1, то есть в данном случае - 1 МГц.
После того как в зоне действия поисковой катушки L1 окажется металлический предмет, её индуктивность изменится. Это приведёт
к изменению частоты колебаний ВЧ-генератора. Далее сигнал ВЧ подаётся на буферный каскад, обеспечивающий согласование генератора
с последующими цепями. В качестве буферного каскада используется эмиттерный повторитель, выполненный на транзисторе Т2.
С выхода эмиттерного повторителя сигнал ВЧ через регулировочный резистор R7 и кварц Q1 поступает на детектор, выполненный на диоде D2.
Благодаря высокой добротности кварца малейший сдвиг частоты измерительного генератора будут приводить к уменьшению полного
сопротивления кварцевого элемента. В результате на вход усилителя постоянного тока (база транзистора Т3) поступает сигнал,
изменение амплитуды которого обеспечивает соответствующее отклонение стрелки индикаторного прибора.
Нагрузкой УПТ, выполненного на транзисторе Т3, является стрелочный прибор с током полного отклонения 1 мА. При замыкании
выключателя S2 в цепь нагрузки включается генератор звукового сигнала, выполненный на транзисторе Т4.
Поисковая катушка L1 представляет собой кольцевую рамку, изготовленную из отрезка кабеля с внешним диаметром 8-10 мм
(например, кабеля марки РК-50). Центральную жилу кабеля следует удалить, а вместо неё протянуть шесть жил провода типа ПЭЛ
диаметром 0,1-0,2 мм и длиной 115 мм. Получившийся многожильный кабель необходимо согнуть на подходящей оправке в кольцо
таким образом, чтобы между началом и концом образовавшейся петли остался зазор шириной примерно 25-30 мм.
Рис.5
Конец провода, являющийся началом первого витка, следует припаять к экранирующей оплётке кабеля, начало второго витка - к концу
первого и так далее. В результате получится катушка, содержащая шесть витков провода. При изготовлении катушки L1 нужно особенно
следить за тем, чтобы не произошло замыкания концов экранирующей оплётки, поскольку в этом случае образуется короткозамкнутый виток.
Непосредственное налаживание металлодетектора следует начать с установки нужной частоты колебаний, формируемых ВЧ-генератором.
Частота колебаний ВЧ должна быть равна частоте кварцевого элемента Q1. Для выполнения данной регулировки рекомендуется воспользоваться
цифровым частотомером. При этом значение частоты сначала грубо устанавливается изменением ёмкости конденсатора С4, а затем точно -
регулировкой конденсатора С3.
При отсутствии частотомера настройку ВЧ-генератора можно провести по показаниям индикатора PA1. Поскольку кварц Q1 является
элементом связи между поисковой и индикаторной частями прибора, то его сопротивление в момент резонанса весьма велико.
Таким образом, о точной настройке колебаний ВЧ-генератора на частоту кварца будет свидетельствовать минимальное показание стрелочного
прибора PA1.Уровень чувствительности данного устройства регулируется резистором R8.
Ну и закончу я обзор весьма популярными среди радиолюбительского сообщества - Импульсными металлоискателями.
Не будем отвлекаться на различные виды импульсных конструкций. Рассмотрим однокатушечный вариант с временным способом
разделения излучаемого и отражённого сигналов.
После воздействия импульса магнитной индукции в искомом проводящем объекте возникает и некоторое время поддерживается (вследствие явления
самоиндукции) затухающий импульс тока, обусловливающий задержанный по времени отражённый сигнал. Он и несёт полезную информацию,
его и надо регистрировать.
Генератор импульсов тока формирует короткие импульсы тока миллисекундного диапазона, поступающие в излучающую катушку,
где они преобразуются в импульсы магнитной индукции. Так как излучающая катушка имеет ярко выраженный индуктивный характер,
всплески напряжения на ней могут достигать по амплитуде десятков-сотен вольт. В связи с этим, необходимо позаботиться: либо о
блокировке входной цепи прибора на определённое время, либо об ограничении данного напряжения на входе приёмной части регистратора.
По истечении времени действия импульса тока в излучающей катушке и времени разрядки катушки в действие должен вступить блок обработки сигнала,
предназначенный для преобразования входного электрического (отражённого от железяки) сигнала в удобную для восприятия человеком форму.
Приведу для примера простую и расхожую схему импульсного металлоискателя ПИРАТ.
Рис.6
Принцип работы этого металлоискателя основан на изменении времени затухания отражённого от металлического предмета импульса в
поисковой катушке, которое увеличивается с приближением металлических предметов.
Дискриминации в данном типе металлоискателя нет, цветной и чёрный металлы реагируют практически одинаково.
Прибор состоит из передающего блока (генератора
импульсов на таймере NE555 и мощного ключа на полевом транзисторе) и приёмной части на операционном усилителе TL072.
По входу приёмника стоят встречно-параллельно включённые ограничивающие диоды, на входе второго каскада ОУ приёмника - фильтр,
отсекающий импульсы, излучаемые передатчиком.
Поисковая катушка L1 намотана на оправку 180-200 мм и содержит 25-30 витков эмалированного провода диаметром 0.5-0.8 мм.
Экранировать катушку не нужно.
Оптимальные параметры работы генератора на NE555 : частота 125-150 Гц, длительность импульса 125-150 мкс.
При соблюдении этих параметров аппарат потребляет минимальный ток и имеет максимальную чувствительность:
Потребляемый ток : 30-50 мА;
Чувствительность : Монета 25 мм — 20 см, крупные предметы — 150 см.
После сборки схемы наладить металлоискатель очень просто. Включаем питание и ждём окончания переходных процессов в течении
15 секунд, подбором резистора R11 добиваемся того, чтобы при среднем положении переменного резистора R12 в динамике не было
слышно звука генератора, а слышались только редкие щелчки.
Поисковая катушка при настройке должна находиться вдали от металлических предметов. При приближении металла в динамике
должен появляться звук с частотой работы таймера NE555.
И подытожим страницу информацией о том, как частота металлоискателя влияет на качество поиска.
Условно частоты работы металлоискателей можно разделить следующим образом:
2-6 кГц — низкая частота;
6-15 кГц — средняя частота;
15-30 кГц — высокая частота;
от 30 кГц и выше — ну, очень высокая частота.
Низким частотам присущи следующие свойства: бóльшая способность проникать в глубину почвы, а потому и увеличенная глубина
обнаружения, способность работать на почвах с высоким уровнем минерализации, способность хорошо справляться с задачей поиска целей
с высокой проводимостью (медь, бронза, серебро).
Из недостатков: не очень хорошо подходят для поиска мелких объектов и поиска целей с низкой проводимостью, например, железа, никеля и т.д.
Высокие частоты обладают следующими свойствами: показывают отличные результаты при поиске мелких объектов,
хорошо подходят для поиска целей с низкой проводимостью, обладают более высокой точностью, особенно при обнаружении целей,
расположенных близко к поверхности.
Из недостатков можно отметить: чувствительность к помехам, создаваемым высокоминерализованным грунтом, меньшая глубина обнаружения по сравнению с
низкой частотой.
Средние частоты представляют собой компромисс между низкими и высокими. Средняя частота считается универсальной,
подходящей под любой тип находок, поэтому практически все бюджетные одночастотные детекторы промышленного производства обладают
стандартной рабочей частотой - 6...8 кГц.
|