Это нужно знать

Общий перечень всех схем находится на  этой странице



Схемы электронных предохранителей для блоков питания

Эффективные средства защиты источников питания от КЗ и перегрузки по току на мощных биполярных и полевых переключающих МОП-транзисторах

С самого начала появления электрооборудования для его защиты от нештатных токовых перегрузок и короткого замыкания использовались плавкие предохранители. Они удовлетворительно справляются с выполнением большей части своих задач, но ввиду большой инерционности - не всегда способны защитить полупроводниковые компоненты (такие как транзисторы, диоды и т. д.) от серьёзных пиковых перегрузок.
Однако гораздо более эффективным средством защиты являются электронные предохранители.
Главными требованиями, предъявляемыми к данным электронным устройствам, являются: высокое быстродействие, относительная простота, экономичность и малые потери напряжения. А в качестве коммутирующих элементов для реализации этих параметров наиболее рациональным является использование мощных полевых переключающих транзисторов.

В интернете представлено множество схем, часть из которых совершенно бесполезны, другие не удовлетворяют необходимым требованиям, и как всегда, только лишь небольшая часть данных устройств может удостоиться нашего пристального внимания.
При этом необходимо заметить, что электронный предохранитель - это далеко не то же самое, что ограничитель тока. Ограничитель тока - это совсем другое устройство, не всегда способное избавить электронное устройство от выхода из строя, особенно в тех случаях, когда у него на выходе образуется короткозамкнутая нагрузка.

Поскольку главным плюсом электронной защиты является высокое быстродействие, то прежде, чем переходить к обсуждению разнообразных схем, необходимо сформулировать общее требование к устройствам, подключаемым к данному типу предохранителей.
Требование одно, но важное - все электролитические конденсаторы значительных ёмкостей следует помещать до предохранителя. В противном случае в начальный момент включения блока питания, в зависимости от импеданса входных цепей (сопротивление обмотки трансформатора, динамическое сопротивление выпрямительных диодов и т. д.), на выходе предохранителя возникнет импульс зарядного тока длительностью в несколько миллисекунд и величиной в десятки ампер (при мощном трансформаторе и ёмкости конденсатора в несколько тысяч микрофарад). Этого импульса может оказаться более чем достаточно для, не сказать, что ложного, но абсолютно ненужного срабатывания устройства защиты.

Начнём с простой, а потому популярной среди радиолюбителей схемы регулируемого электронного предохранителя, опубликованной в журнале Радио №5, 1988 г., стр.31, под авторством Н. Эсаулова.


Регулируемый электронный предохранитель
Регулируемый электронный предохранитель
Рис.1

Это устройство предназначено для защиты цепей постоянного тока от перегрузки по току и замыканий цепи нагрузки. Его включают между источником питания и нагрузкой.

Предохранитель выполнен в виде двухполюсника и может работать совместно с блоком питания с регулируемым выходным напряжением в пределах 3...35 В. Максимальное полное падение напряжения на предохранителе не превышает 1,9 В при максимальном токе нагрузки. Ток срабатывания защитного устройства можно плавно регулировать в пределах от 0,1 до 1,5 А независимо от напряжения на нагрузке. Электронный предохранитель обладает хорошими термостабильностью и быстродействием (3... 5 мкс), надежен в работе.

В рабочем режиме тринистор VS1 закрыт, а электронный ключ на транзисторах VT1, VT2 открыт током, протекающим через резистор R1 в базу транзистора VT1. При этом ток нагрузки протекает через электронный ключ, набор резисторов R3- R6, переменный резистор R8 и контакты кнопки SB1.

При перегрузке падение напряжения на цепи резисторов R3-R6, R8 достигает значения, достаточного для открывания тринистора VS1 по цепи управляющего электрода. Открывшийся тринистор замыкает цепь базы транзистора VT1, что приводит к закрыванию электронного ключа. Ток в цепи нагрузки резко уменьшается; остается незначительный остаточный ток, равный Iост=Uпит/R1. При Uпит=9 В Iост=12 мА, а при 35 В - 47 мА.

Для того чтобы восстановить рабочий режим после устранения причины перегрузки, нужно на короткое время нажать на кнопку SB1 и отпустить. При этом тринистор закроется, а транзисторы VT1 и VT2 вновь откроются.
В предохранителе лучше использовать тринисторы КУ103А с напряжением открывания 0,4...0,6 В.

Устройство, приведённое на схеме (Рис.1), является вполне себе работоспособным, но, тем не менее, удачным я бы его не назвал. Причина этого кроется в большей величине потери напряжения на предохранителе, которое складывается из суммы падений напряжений на эмиттерных переходах транзисторов VT1 и VT2 (1,2...1,4В), и падения напряжения на цепи резисторов, которое при максимальных токах будет близко к напряжению открывания тиристора. А напряжение открывания тиристора КУ103А 0,4...0,6 В - это величина, которую можно не обнаружить, даже перекопав сотню изделий, потому как паспортная величина отпирающего напряжение управления на прибор составляет 0,4...2 В.

На очереди схема под авторством И. Нечаева (Журнал «Радио» №6 2005 г).


Электронный предохранитель

Электронный предохранитель
Рис.2

Предохранитель включают между источником питания (выключателем) и нагрузкой. Устройство работоспособно при напряжении от 5 до 20 В и токе нагрузки до 40 А. Полевой транзистор Л»1 выполняет одновременно функции электронного ключа и датчика тока, микросхема ОУ DA1.1 - компаратора напряжения. На микросхеме DA2 собран источник образцового напряжения 2,5 В.

Для запуска устройства служит кнопка SB1, при кратковременном замыкании которой напряжение питания через диод VD2 и резистор R4 поступит на затвор транзистора, вследствие чего он откроется и подключит нагрузку к источнику питания. Выходное напряжение ОУ зависит от соотношения напряжений на его входах. Если ток нагрузки меньше тока срабатывания предохранителя, напряжение на неинвертирующем входе будет больше, чем на инвертирующем, поэтому на выходе ОУ будет напряжение, меньшее напряжения питания примерно на 1,5 В. Транзистор VT1 останется открытым, на неинвертирующем входе ОУ будет стабильное напряжение с резистивного делителя R2R1.

Особенность электронного предохранителя — использование сопротивления канала полевого транзистора в качестве датчика тока. Основные параметры примененного транзистора: сопротивление канала - 0,027 Ом, максимальный ток стока - 41 А, предельное напряжение сток-исток - 55 В, а максимальная рассеиваемая мощность - 110 Вт. Сопротивление канала открытого транзистора зависит от напряжения на его выводах и температуры корпуса, при напряжении питания более 5…6 В оно изменяется в пределах 20…30 %, что вполне допустимо для таких устройств.
С увеличением потребляемого тока будет расти напряжение и на транзисторе VT1. Когда оно превысит напряжение на резисторе R1, на выходе ОУ напряжение станет уменьшаться, транзистор будет закрываться, а напряжение на нем расти, что приведет к дальнейшему снижению напряжения на выходе ОУ и закрыванию транзистора. Следовательно, когда ток нагрузки достигает определенного значения, устройство скачком закрывает транзистор и обесточивает нагрузку. Светодиод HL1 сигнализирует о том, что устройство выключено.
Ток, потребляемый предохранителем в этом состоянии (без учета тока через светодиод), равен несколько миллиампер. Для включения нагрузки необходимо снова кратковременно нажать на кнопку SB 1.

Ток срабатывания предохранителя устанавливают подстроечным резистором R1. Если напряжение питания стабильно, микросхему DA2 и резистор R3 можно исключить, заменив последний проволочной перемычкой. Для устойчивого отключения нагрузки при малом токе срабатывания (менее 1…1.5А) следует увеличить сопротивление датчика тока, включив резистор сопротивлением около 0,1 Ом в цепь стока транзистора VT1 (в разрыв цепи в точке А на рис. 2).

К недостаткам приведённого устройства я бы отнёс расположение датчика тока и коммутирующего элемента в минусовой, т. е. в большинстве случаев - земляной шине блока питания. Это, с одной стороны, может создать сложности с межблоковым соединением (при необходимости) плат к общей земляной шине, с другой - усложнит изготовление защиты для двуполярного БП.

Похожие схемы электронных предохранителей (с теми или иными вариациями) можно встретить и в зарубежных источниках. Причём применение они находят в источниках питания с максимальными токами вплоть до десятков и сотен ампер. При столь высоких токах нагрузки, по цепям питания и земли могут наводиться существенные импульсные помехи, которые будут приводить к ложным срабатываниям быстродействующих электронных предохранителей. В таких ситуациях приходится значительно увеличивать порог срабатывания компаратора (вплоть до 0,5...1 В) и одновременно повышать сопротивление датчика тока, что в свою очередь приводит значительному выделению тепла на нём и резкому снижению КПД устройства.
Выходом из положения может стать датчик магнитного поля - геркон и несколько сантиметров толстого провода.

Электронный предохранитель

Рис.3

При прохождении тока через обмотку, намотанную поверх датчика (Рис.3), внутри неё возникает магнитное поле, которое приводит к замыканию контактов геркона.
Намотав обмотку из десяти (или любого другого количества) витков и измерив ток срабатывания геркона, можно масштабировать это значение на любой интересующий нас ток.
Так например, если геркон КЭМ-1 при десяти витках замыкается при токе через обмотку около 15А, то, намотав 2 витка, мы увеличим ток срабатывания в 5 раз, т. е. до 75 А, а перемещая геркон внутри катушки, сможем регулировать это ток в некоторых пределах вплоть до 85...90 А.
К достоинствам герконов также можно отнести и относительно высокое быстродействие. Время срабатывания у них, как правило, не превышает 1...2 миллисекунд.
Всё, что теперь остаётся - это нарисовать триггерную схему мощного транзисторного ключа, управляемого герконовым токовым датчиком.
Электронный предохранитель
Рис.4

Схема, приведённая на Рис.4, довольно универсальна и позволяет осуществлять защиту устройтв от перегрузки в широком диапазоне входных напряжений (9...80 вольт) без изменения номиналов элементов.
Устройство состоит из транзисторной защёлки, выполненной на элементах Т1 и Т2, и находится в устойчивом состоянии до момента подачи на базу транзистора Т2 короткого положительного или отрицательного импульса.
Для того, чтобы включить электронный предохранитель необходимо нажать на нефиксируемый включатель S1, подав на базу Т2 импульс положительной полярности.
Срабатывает защита от импульса отрицательной полярности, который формируют контакты геркона SF1.
Мощный P-канальный полевой транзистор Т1 следует выбирать с некоторым запасом, исходя из тока срабатывания электронного предохранителя.
Подробно рассмотрим данную схему, её достоинства и недостатки, а также возможности модификации на странице ссылка на страницу

Приведённая выше схема электронного предохранителя с герконовым датчиком хороша при высоких токах работы устройства, исчисляемых десятками и сотнями ампер.
При меньших токах я бы отдал предпочтение резистивным датчикам, позволяющим заранее произвести точный расчёт номиналов элементов, а также ввести плавную или ступенчатую регулировку тока срабатывания. И тут желательно определиться с оптимальной величиной падения напряжения на резистивном датчике, при котором происходит срабатывание порогового устройства и переход предохранителя из проводящего в закрытое состояние. На мой взгляд, величина этого напряжения ~ 0,5 В является компромиссной - как с точки зрения помехозащищённости и отсутствия ложных срабатываний, так и с точки зрения значений КПД электронного предохранителя и падения напряжения на нём.
Электронный предохранитель
Рис.5

На элементах Т1 и Т2 выполнен транзисторный аналог тиристора со стабильным напряжением срабатывания ~ 0,6В. Ток срабатывания этого тиристора, а соответственно и всего предохранителя зависит от номинала резистора R4, который рассчитывается по формуле: R4 (Ом) ≈ 0,6/Iср (А).
Эту схему, её достоинства, недостатки и различные модификации мы так же подробно рассмотрим на странице - ссылка на страницу.


 

Главная страница | Наши разработки | Полезные схемы | Это нужно знать | Вопросы-ответы | Весёлый перекур
© 2017 Vpayaem.ru   All Rights Reserved

     
     

Схемы электронных предохранителей для блоков питания

Эффективные средства защиты источников питания от КЗ и перегрузки по току на мощных биполярных и полевых переключающих МОП-транзисторах

С самого начала появления электрооборудования для его защиты от нештатных токовых перегрузок и короткого замыкания использовались плавкие предохранители. Они удовлетворительно справляются с выполнением большей части своих задач, но ввиду большой инерционности - не всегда способны защитить полупроводниковые компоненты (такие как транзисторы, диоды и т. д.) от серьёзных пиковых перегрузок.
Однако гораздо более эффективным средством защиты являются электронные предохранители.
Главными требованиями, предъявляемыми к данным электронным устройствам, являются: высокое быстродействие, относительная простота, экономичность и малые потери напряжения. А в качестве коммутирующих элементов для реализации этих параметров наиболее рациональным является использование мощных полевых переключающих транзисторов.

В интернете представлено множество схем, часть из которых совершенно бесполезны, другие не удовлетворяют необходимым требованиям, и как всегда, только лишь небольшая часть данных устройств может удостоиться нашего пристального внимания.
При этом необходимо заметить, что электронный предохранитель - это далеко не то же самое, что ограничитель тока. Ограничитель тока - это совсем другое устройство, не всегда способное избавить электронное устройство от выхода из строя, особенно в тех случаях, когда у него на выходе образуется короткозамкнутая нагрузка.

Поскольку главным плюсом электронной защиты является высокое быстродействие, то прежде, чем переходить к обсуждению разнообразных схем, необходимо сформулировать общее требование к устройствам, подключаемым к данному типу предохранителей.
Требование одно, но важное - все электролитические конденсаторы значительных ёмкостей следует помещать до предохранителя. В противном случае в начальный момент включения блока питания, в зависимости от импеданса входных цепей (сопротивление обмотки трансформатора, динамическое сопротивление выпрямительных диодов и т. д.), на выходе предохранителя возникнет импульс зарядного тока длительностью в несколько миллисекунд и величиной в десятки ампер (при мощном трансформаторе и ёмкости конденсатора в несколько тысяч микрофарад). Этого импульса может оказаться более чем достаточно для, не сказать, что ложного, но абсолютно ненужного срабатывания устройства защиты.

Начнём с простой, а потому популярной среди радиолюбителей схемы регулируемого электронного предохранителя, опубликованной в журнале Радио №5, 1988 г., стр.31, под авторством Н. Эсаулова.


Регулируемый электронный предохранитель
Регулируемый электронный предохранитель
Рис.1

Это устройство предназначено для защиты цепей постоянного тока от перегрузки по току и замыканий цепи нагрузки. Его включают между источником питания и нагрузкой.

Предохранитель выполнен в виде двухполюсника и может работать совместно с блоком питания с регулируемым выходным напряжением в пределах 3...35 В. Максимальное полное падение напряжения на предохранителе не превышает 1,9 В при максимальном токе нагрузки. Ток срабатывания защитного устройства можно плавно регулировать в пределах от 0,1 до 1,5 А независимо от напряжения на нагрузке. Электронный предохранитель обладает хорошими термостабильностью и быстродействием (3... 5 мкс), надежен в работе.

В рабочем режиме тринистор VS1 закрыт, а электронный ключ на транзисторах VT1, VT2 открыт током, протекающим через резистор R1 в базу транзистора VT1. При этом ток нагрузки протекает через электронный ключ, набор резисторов R3- R6, переменный резистор R8 и контакты кнопки SB1.

При перегрузке падение напряжения на цепи резисторов R3-R6, R8 достигает значения, достаточного для открывания тринистора VS1 по цепи управляющего электрода. Открывшийся тринистор замыкает цепь базы транзистора VT1, что приводит к закрыванию электронного ключа. Ток в цепи нагрузки резко уменьшается; остается незначительный остаточный ток, равный Iост=Uпит/R1. При Uпит=9 В Iост=12 мА, а при 35 В - 47 мА.

Для того чтобы восстановить рабочий режим после устранения причины перегрузки, нужно на короткое время нажать на кнопку SB1 и отпустить. При этом тринистор закроется, а транзисторы VT1 и VT2 вновь откроются.
В предохранителе лучше использовать тринисторы КУ103А с напряжением открывания 0,4...0,6 В.

Устройство, приведённое на схеме (Рис.1), является вполне себе работоспособным, но, тем не менее, удачным я бы его не назвал. Причина этого кроется в большей величине потери напряжения на предохранителе, которое складывается из суммы падений напряжений на эмиттерных переходах транзисторов VT1 и VT2 (1,2...1,4В), и падения напряжения на цепи резисторов, которое при максимальных токах будет близко к напряжению открывания тиристора. А напряжение открывания тиристора КУ103А 0,4...0,6 В - это величина, которую можно не обнаружить, даже перекопав сотню изделий, потому как паспортная величина отпирающего напряжение управления на прибор составляет 0,4...2 В.

На очереди схема под авторством И. Нечаева (Журнал «Радио» №6 2005 г).


Электронный предохранитель

Электронный предохранитель
Рис.2

Предохранитель включают между источником питания (выключателем) и нагрузкой. Устройство работоспособно при напряжении от 5 до 20 В и токе нагрузки до 40 А. Полевой транзистор Л»1 выполняет одновременно функции электронного ключа и датчика тока, микросхема ОУ DA1.1 - компаратора напряжения. На микросхеме DA2 собран источник образцового напряжения 2,5 В.

Для запуска устройства служит кнопка SB1, при кратковременном замыкании которой напряжение питания через диод VD2 и резистор R4 поступит на затвор транзистора, вследствие чего он откроется и подключит нагрузку к источнику питания. Выходное напряжение ОУ зависит от соотношения напряжений на его входах. Если ток нагрузки меньше тока срабатывания предохранителя, напряжение на неинвертирующем входе будет больше, чем на инвертирующем, поэтому на выходе ОУ будет напряжение, меньшее напряжения питания примерно на 1,5 В. Транзистор VT1 останется открытым, на неинвертирующем входе ОУ будет стабильное напряжение с резистивного делителя R2R1.

Особенность электронного предохранителя — использование сопротивления канала полевого транзистора в качестве датчика тока. Основные параметры примененного транзистора: сопротивление канала - 0,027 Ом, максимальный ток стока - 41 А, предельное напряжение сток-исток - 55 В, а максимальная рассеиваемая мощность - 110 Вт. Сопротивление канала открытого транзистора зависит от напряжения на его выводах и температуры корпуса, при напряжении питания более 5…6 В оно изменяется в пределах 20…30 %, что вполне допустимо для таких устройств.
С увеличением потребляемого тока будет расти напряжение и на транзисторе VT1. Когда оно превысит напряжение на резисторе R1, на выходе ОУ напряжение станет уменьшаться, транзистор будет закрываться, а напряжение на нем расти, что приведет к дальнейшему снижению напряжения на выходе ОУ и закрыванию транзистора. Следовательно, когда ток нагрузки достигает определенного значения, устройство скачком закрывает транзистор и обесточивает нагрузку. Светодиод HL1 сигнализирует о том, что устройство выключено.
Ток, потребляемый предохранителем в этом состоянии (без учета тока через светодиод), равен несколько миллиампер. Для включения нагрузки необходимо снова кратковременно нажать на кнопку SB 1.

Ток срабатывания предохранителя устанавливают подстроечным резистором R1. Если напряжение питания стабильно, микросхему DA2 и резистор R3 можно исключить, заменив последний проволочной перемычкой. Для устойчивого отключения нагрузки при малом токе срабатывания (менее 1…1.5А) следует увеличить сопротивление датчика тока, включив резистор сопротивлением около 0,1 Ом в цепь стока транзистора VT1 (в разрыв цепи в точке А на рис. 2).

К недостаткам приведённого устройства я бы отнёс расположение датчика тока и коммутирующего элемента в минусовой, т. е. в большинстве случаев - земляной шине блока питания. Это, с одной стороны, может создать сложности с межблоковым соединением (при необходимости) плат к общей земляной шине, с другой - усложнит изготовление защиты для двуполярного БП.

Похожие схемы электронных предохранителей (с теми или иными вариациями) можно встретить и в зарубежных источниках. Причём применение они находят в источниках питания с максимальными токами вплоть до десятков и сотен ампер. При столь высоких токах нагрузки, по цепям питания и земли могут наводиться существенные импульсные помехи, которые будут приводить к ложным срабатываниям быстродействующих электронных предохранителей. В таких ситуациях приходится значительно увеличивать порог срабатывания компаратора (вплоть до 0,5...1 В) и одновременно повышать сопротивление датчика тока, что в свою очередь приводит значительному выделению тепла на нём и резкому снижению КПД устройства.
Выходом из положения может стать датчик магнитного поля - геркон и несколько сантиметров толстого провода.

Электронный предохранитель

Рис.3

При прохождении тока через обмотку, намотанную поверх датчика (Рис.3), внутри неё возникает магнитное поле, которое приводит к замыканию контактов геркона.
Намотав обмотку из десяти (или любого другого количества) витков и измерив ток срабатывания геркона, можно масштабировать это значение на любой интересующий нас ток.
Так например, если геркон КЭМ-1 при десяти витках замыкается при токе через обмотку около 15А, то, намотав 2 витка, мы увеличим ток срабатывания в 5 раз, т. е. до 75 А, а перемещая геркон внутри катушки, сможем регулировать это ток в некоторых пределах вплоть до 85...90 А.
К достоинствам герконов также можно отнести и относительно высокое быстродействие. Время срабатывания у них, как правило, не превышает 1...2 миллисекунд.
Всё, что теперь остаётся - это нарисовать триггерную схему мощного транзисторного ключа, управляемого герконовым токовым датчиком.
Электронный предохранитель
Рис.4

Схема, приведённая на Рис.4, довольно универсальна и позволяет осуществлять защиту устройтв от перегрузки в широком диапазоне входных напряжений (9...80 вольт) без изменения номиналов элементов.
Устройство состоит из транзисторной защёлки, выполненной на элементах Т1 и Т2, и находится в устойчивом состоянии до момента подачи на базу транзистора Т2 короткого положительного или отрицательного импульса.
Для того, чтобы включить электронный предохранитель необходимо нажать на нефиксируемый включатель S1, подав на базу Т2 импульс положительной полярности.
Срабатывает защита от импульса отрицательной полярности, который формируют контакты геркона SF1.
Мощный P-канальный полевой транзистор Т1 следует выбирать с некоторым запасом, исходя из тока срабатывания электронного предохранителя.
Подробно рассмотрим данную схему, её достоинства и недостатки, а также возможности модификации на странице ссылка на страницу

Приведённая выше схема электронного предохранителя с герконовым датчиком хороша при высоких токах работы устройства, исчисляемых десятками и сотнями ампер.
При меньших токах я бы отдал предпочтение резистивным датчикам, позволяющим заранее произвести точный расчёт номиналов элементов, а также ввести плавную или ступенчатую регулировку тока срабатывания. И тут желательно определиться с оптимальной величиной падения напряжения на резистивном датчике, при котором происходит срабатывание порогового устройства и переход предохранителя из проводящего в закрытое состояние. На мой взгляд, величина этого напряжения ~ 0,5 В является компромиссной - как с точки зрения помехозащищённости и отсутствия ложных срабатываний, так и с точки зрения значений КПД электронного предохранителя и падения напряжения на нём.
Электронный предохранитель
Рис.5

На элементах Т1 и Т2 выполнен транзисторный аналог тиристора со стабильным напряжением срабатывания ~ 0,6В. Ток срабатывания этого тиристора, а соответственно и всего предохранителя зависит от номинала резистора R4, который рассчитывается по формуле: R4 (Ом) ≈ 0,6/Iср (А).
Эту схему, её достоинства, недостатки и различные модификации мы так же подробно рассмотрим на странице - ссылка на страницу.



  ==================================================================