Это нужно знать

Общий перечень знаний –
на этой странице



Первый и второй законы Кирхгофа для электрических цепей

Понятия узла, ветви и контура электрической цепи.
Решения систем линейных уравнений, составленных на основе правил Кирхгофа. Преобразование электрической цепи треугольник-звезда с онлайн калькулятором

Законы Кирхгофа, они же правила Кирхгофа (ибо фундаментальными законами не являются) – это ряд условий (в количестве двух штук) для составления системы линейных уравнений, описывающих соотношения между токами и напряжениями в разветвлённых электрических цепях.
Законы Кирхгофа довольно универсальны. Они справедливы для линейных и нелинейных цепей, постоянного и переменного токов и в совокупности с законом Ома позволяют определить параметры электрических цепей любой сложности.

Для формулирования своих правил Кирхгоф ввёл несколько понятий, таких как: узел, ветвь и контур, значение которых поясним на простом примере (Рис.1).

Законы Кирхгофа, пример электрической цепи
 
Рис.1 Пример схемы электрической
цепи

Узлом называется точка соединения трёх или более ветвей (на схемах обозначается жирной точкой).
На Рис.1, приведённом в качестве примера электрической цепи – это точки А, В, С.
Ветвью называют участок элек­три­чес­кой цепи с одним и тем же значением тока. На Рис.1 – это 5 ветвей с токами I1...I5.
Контуром называется замкнутый путь, по которому протекает элек­три­чес­кий ток, проходя через несколько участков цепи, включающих в себя узлы и ветви. На Рис.1 контуры изображены круглыми стрелками.


Теперь, определившись с терминами, можно переходить к формулированию законов Кирхгофа.

Первый закон или правило Кирхгофа вытекает из закона сохранения заряда и провозглашает, что алгебраическая сумма токов, сходящихся в каждом узле любой цепи, равна нулю.
Иными словами, сколько тока втекает в узел, столько из него и вытекает. При этом направленный к узлу ток принято считать положительным, а направленный от узла – отрицательным.
Если следовать примеру, приведённому на Рис.1, то для узла А:   I1+I4-I3=0.

Переходим ко второму закону Кирхгофа, который вытекает из третьего уравнения Максвелла и формулируется следующим образом:
Алгебраическая сумма ЭДС в замкнутом контуре равна алгебраической (т. е. с учётом знака) сумме падений напряжений на всех элементах этого контура. Если в контуре нет источников ЭДС (генераторов напряжения), то суммарное падение напряжений равно нулю.
Направление обхода ветвей контура выбирается произвольно. Падение напряжения считают положительным, если направление тока ветви совпадает с ранее выбранным направлением обхода, в противном случае – отрицательным.
Припадаем к рисунку Рис.1, выбираем один из трёх контуров и констатируем:
UR2 + UR4 + UR3 = Е2.

Законы законами, да и правила – вещь не самая бесполезная в радиолюбительском хозяйстве, только как воспользоваться всей этой полученной информацией на практике? Давайте с этим разберёмся и рассмотрим схему более приближённую к реальной жизни, чем та, которую мы приводили ранее в качестве примера, а конкретно – схему несбалансированного резистивного моста (Рис.2).
Пример применения правил Кирхгофа
Рис.2 Пример применения
правил Кирхгофа

Для расчёта токов, протекающих в цепях, для начала воспользуемся первым правилом Кирхгофа:
Iобщ = I1 + I4 = I2 + I5 ;
I1 = I2 + I3 .
.

Согласно второму правилу и закону Ома:
I1*R1 + I2*R2 = E ;
I4*R4 + I5*R5 = E ;
I1*R1 + I3*R3 + I5*R5 = E .


Ну и хватит: пять уравнений, пять неизвестных – вполне достаточно, для того чтобы получить искомые значения всех токов.


Правда возникает резонный вопрос – КАК? Отвечу – матричным методом решения систем линейных алгебраических уравнений с ненулевым определителем. Согласен – геморрой! А поскольку мы ребята ленивые, но местами сообразительные, то и не станем искать сложных путей, а воспользуемся широко известным в узких кругах методом эквивалентного преобразования пассивных цепей – треугольник-звезда. Как это выглядит?
Преобразование треугольник - звезда
Рис.3 Преобразование треугольник-звезда

Преобразование треугольник ⇒ звезда:
R1з=R1т*R3т /(R1т+R2т+R3т) ;
R2з=R1т*R2т /(R1т+R2т+R3т) ;
R3з=R2т*R3т /(R1т+R2т+R3т) .


И обратное преобразование:
R1т=R1з+R2з+ R1з*R2з /R3з ;
R2т=R2з+R3з+ R2з*R3з /R1з ;
R3т=R1з+R3з+ R1з*R3з /R2з .


Сопроводим рисунок простыми онлайн калькуляторами.

Онлайн расчёт элементов преобразования треугольник ⇒ звезда

Сопротивление резистора R1т
Сопротивление резистора R2т 
Сопротивление резистора R3т
  
Сопротивление резистора R1з
Сопротивление резистора R2з
Сопротивление резистора R3з


Онлайн расчёт элементов преобразования звезда ⇒ треугольник

Сопротивление резистора R1з 
Сопротивление резистора R2з
Сопротивление резистора R3з
  
Сопротивление резистора R1з
Сопротивление резистора R2з
Сопротивление резистора R3з


Теперь в схеме несбалансированного резистивного моста (Рис.2) можно выделить треугольник, состоящий из резисторов R2, R3 и R5, и заменить его на звезду (R1з...R3з, Рис.4 б).

Преобразование треугольник - звезда
Рис.4 Эквивалентное преобразование треугольник-звезда

А нужно нам это дело для того, чтобы, используя правила параллельного и последовательного соединения резисторов, свести всю нашу многозвенную цепь к одному элементу (Rэкв, Рис.4 г), после чего посредством простейшей манипуляции на калькуляторе или деревянных счётах вычислить величину: Iобщ = Е/Rэкв = 10В/2.239кОм = 4.47мА.
Теперь, перемещаясь к Рис.4 в) и воспользовавшись первым правилом Кирхгофа, констатируем:
IR1з = I1 + I4 = Iобщ = 4.47мА.
Далее напрочь забываем о Густаве Робертовиче Кирхгофе вместе с его правилами и юзаем исключительно закон Ома в самом что ни на есть его чистом виде:
UC = IR1з * R1з = Iобщ * R1з = 4.47мА * 1кОм = 4.47В (Рис.4 в).
I1 * (R1 + R2з) = E - UC (Рис.4 б),
отсюда:
I1 = (10В - 4.47В) / (1кОм + 600Ом) = 3.46мА.
Точно так же:
I4 = (E - UC) / (R4 + R3з) = (10В - 4.47В) / (4кОм + 1.5кОм) = 1.01мА.
И последний финишный рывок мы совершим, вернувшись к первоначальной схеме (Рис.4 а):
UА = Е - R1 * I1 = 10 В - 1кОм * 3.46мА = 6.54В.
UВ = Е - R4 * I4 = 10 В - 4кОм * 1.01мА = 5.96В.
I3 = (UА - UВ) / R3 = (6.54В - 5.96В) / 3кОм = 0.19мА.
I2 = UА / R2 = 6.54В / 2кОм = 3.27мА.
I5 = UВ / R5 = 5.96В / 5кОм = 1.19мА.

Всё, расчёт окончен! Ну а поскольку мы ребята не только сообразительные, но и пытливые умом и трезвым взглядом на вещи, то нам будет не влом проверить полученные результаты на симуляторе:

Проверка законов Кирхгофа на симуляторе

Вот теперь – точно всё! Отныне мы не только освоили оба правила Кирхгофа, но и основательно освежили в памяти основной закон электротехники – закон Ома.

 

Главная страница | Наши разработки | Полезные схемы | Это нужно знать | Вопросы-ответы | Весёлый перекур
© 2017 Vpayaem.ru   All Rights Reserved

     
     

Первый и второй законы Кирхгофа для электрических цепей

Понятия узла, ветви и контура электрической цепи.
Решения систем линейных уравнений, составленных на основе правил Кирхгофа. Преобразование электрической цепи треугольник-звезда с онлайн калькулятором

Законы Кирхгофа, они же правила Кирхгофа (ибо фундаментальными законами не являются) – это ряд условий (в количестве двух штук) для составления системы линейных уравнений, описывающих соотношения между токами и напряжениями в разветвлённых электрических цепях.
Законы Кирхгофа довольно универсальны. Они справедливы для линейных и нелинейных цепей, постоянного и переменного токов и в совокупности с законом Ома позволяют определить параметры электрических цепей любой сложности.

Для формулирования своих правил Кирхгоф ввёл несколько понятий, таких как: узел, ветвь и контур, значение которых поясним на простом примере (Рис.1).

Законы Кирхгофа, пример электрической цепи
 
Рис.1 Пример схемы электрической
цепи

Узлом называется точка соединения трёх или более ветвей (на схемах обозначается жирной точкой).
На Рис.1, приведённом в качестве примера электрической цепи – это точки А, В, С.
Ветвью называют участок элек­три­чес­кой цепи с одним и тем же значением тока. На Рис.1 – это 5 ветвей с токами I1...I5.
Контуром называется замкнутый путь, по которому протекает элек­три­чес­кий ток, проходя через несколько участков цепи, включающих в себя узлы и ветви. На Рис.1 контуры изображены круглыми стрелками.


Теперь, определившись с терминами, можно переходить к формулированию законов Кирхгофа.

Первый закон или правило Кирхгофа вытекает из закона сохранения заряда и провозглашает, что алгебраическая сумма токов, сходящихся в каждом узле любой цепи, равна нулю.
Иными словами, сколько тока втекает в узел, столько из него и вытекает. При этом направленный к узлу ток принято считать положительным, а направленный от узла – отрицательным.
Если следовать примеру, приведённому на Рис.1, то для узла А:   I1+I4-I3=0.

Переходим ко второму закону Кирхгофа, который вытекает из третьего уравнения Максвелла и формулируется следующим образом:
Алгебраическая сумма ЭДС в замкнутом контуре равна алгебраической (т. е. с учётом знака) сумме падений напряжений на всех элементах этого контура. Если в контуре нет источников ЭДС (генераторов напряжения), то суммарное падение напряжений равно нулю.
Направление обхода ветвей контура выбирается произвольно. Падение напряжения считают положительным, если направление тока ветви совпадает с ранее выбранным направлением обхода, в противном случае – отрицательным.
Припадаем к рисунку Рис.1, выбираем один из трёх контуров и констатируем:
UR2 + UR4 + UR3 = Е2.

Законы законами, да и правила – вещь не самая бесполезная в радиолюбительском хозяйстве, только как воспользоваться всей этой полученной информацией на практике? Давайте с этим разберёмся и рассмотрим схему более приближённую к реальной жизни, чем та, которую мы приводили ранее в качестве примера, а конкретно – схему несбалансированного резистивного моста (Рис.2).
Пример применения правил Кирхгофа
Рис.2 Пример применения
правил Кирхгофа

Для расчёта токов, протекающих в цепях, для начала воспользуемся первым правилом Кирхгофа:
Iобщ = I1 + I4 = I2 + I5 ;
I1 = I2 + I3 .
.

Согласно второму правилу и закону Ома:
I1*R1 + I2*R2 = E ;
I4*R4 + I5*R5 = E ;
I1*R1 + I3*R3 + I5*R5 = E .


Ну и хватит: пять уравнений, пять неизвестных – вполне достаточно, для того чтобы получить искомые значения всех токов.


Правда возникает резонный вопрос – КАК? Отвечу – матричным методом решения систем линейных алгебраических уравнений с ненулевым определителем. Согласен – геморрой! А поскольку мы ребята ленивые, но местами сообразительные, то и не станем искать сложных путей, а воспользуемся широко известным в узких кругах методом эквивалентного преобразования пассивных цепей – треугольник-звезда. Как это выглядит?
Преобразование треугольник - звезда
Рис.3 Преобразование треугольник-звезда

Преобразование треугольник ⇒ звезда:
R1з=R1т*R3т /(R1т+R2т+R3т) ;
R2з=R1т*R2т /(R1т+R2т+R3т) ;
R3з=R2т*R3т /(R1т+R2т+R3т) .


И обратное преобразование:
R1т=R1з+R2з+ R1з*R2з /R3з ;
R2т=R2з+R3з+ R2з*R3з /R1з ;
R3т=R1з+R3з+ R1з*R3з /R2з .


Сопроводим рисунок простыми онлайн калькуляторами.

Онлайн расчёт элементов преобразования треугольник ⇒ звезда

Сопротивление резистора R1т
Сопротивление резистора R2т 
Сопротивление резистора R3т
  
Сопротивление резистора R1з
Сопротивление резистора R2з
Сопротивление резистора R3з


Онлайн расчёт элементов преобразования звезда ⇒ треугольник

Сопротивление резистора R1з 
Сопротивление резистора R2з
Сопротивление резистора R3з
  
Сопротивление резистора R1з
Сопротивление резистора R2з
Сопротивление резистора R3з


Теперь в схеме несбалансированного резистивного моста (Рис.2) можно выделить треугольник, состоящий из резисторов R2, R3 и R5, и заменить его на звезду (R1з...R3з, Рис.4 б).

Преобразование треугольник - звезда
Рис.4 Эквивалентное преобразование треугольник-звезда

А нужно нам это дело для того, чтобы, используя правила параллельного и последовательного соединения резисторов, свести всю нашу многозвенную цепь к одному элементу (Rэкв, Рис.4 г), после чего посредством простейшей манипуляции на калькуляторе или деревянных счётах вычислить величину: Iобщ = Е/Rэкв = 10В/2.239кОм = 4.47мА.
Теперь, перемещаясь к Рис.4 в) и воспользовавшись первым правилом Кирхгофа, констатируем:
IR1з = I1 + I4 = Iобщ = 4.47мА.
Далее напрочь забываем о Густаве Робертовиче Кирхгофе вместе с его правилами и юзаем исключительно закон Ома в самом что ни на есть его чистом виде:
UC = IR1з * R1з = Iобщ * R1з = 4.47мА * 1кОм = 4.47В (Рис.4 в).
I1 * (R1 + R2з) = E - UC (Рис.4 б),
отсюда:
I1 = (10В - 4.47В) / (1кОм + 600Ом) = 3.46мА.
Точно так же:
I4 = (E - UC) / (R4 + R3з) = (10В - 4.47В) / (4кОм + 1.5кОм) = 1.01мА.
И последний финишный рывок мы совершим, вернувшись к первоначальной схеме (Рис.4 а):
UА = Е - R1 * I1 = 10 В - 1кОм * 3.46мА = 6.54В.
UВ = Е - R4 * I4 = 10 В - 4кОм * 1.01мА = 5.96В.
I3 = (UА - UВ) / R3 = (6.54В - 5.96В) / 3кОм = 0.19мА.
I2 = UА / R2 = 6.54В / 2кОм = 3.27мА.
I5 = UВ / R5 = 5.96В / 5кОм = 1.19мА.

Всё, расчёт окончен! Ну а поскольку мы ребята не только сообразительные, но и пытливые умом и трезвым взглядом на вещи, то нам будет не влом проверить полученные результаты на симуляторе:

Проверка законов Кирхгофа на симуляторе

Вот теперь – точно всё! Отныне мы не только освоили оба правила Кирхгофа, но и основательно освежили в памяти основной закон электротехники – закон Ома.

  ==================================================================