Онлайн расчёт площади радиаторов для транзисторов и микросхем.
- На кой хрен козе баян? Она и так весёлая ... - живо интересовались удмуртские радиолюбители, разглядывая диковинный
теплоотвод, установленный на лампу выходного каскада.
- Только для игры на баяне, козе баян и нужен, на какой же ещё? - гордо отвечал владелец теплоотвода, весьма довольный
произведённым на коллег впечатлением.
На самом деле, вакуумным приборам, работающим в штатном режиме, дополнительный отвод тепла не требуется.
А вот мощным транзисторам, микросхемам и всяким диодам, которые толком и на баяне играть не умеют
и, подобно лампам, рассеивать тепловую мощность путём естественной конвекции не научились - подавай принудительный отвод тепла от
кристалла полупроводника. А не подашь, отойдут стройными рядами от мира сего из-за перегрева и последующего разрушения этого самого
рабочего кристалла.
Так вот, для обеспечения эффективного отвода тепла от силового элемента и применяют теплоотводы (радиаторы).
Полный расчёт радиатора - вещь кропотливая. Можно воспользоваться грубым расчётом -
для рассеивания 1 ватта тепла, выделяемого полупроводниковым прибором, достаточно использовать площадь теплоотвода,
равную 30 квадратным сантиметрам.
Но лучше воспользоваться специальной программой.
Существует формула для расчёта теплового сопротивления теплоотвода:
Q=(T2-T1)/P-Q1-Q2, где
Т2 - максимальная температура кристалла транзистора по справочнику,
Т1 - максимально допустимая температура в коробке с нашим устройством,
P - рассеиваемая на транзисторе мощность,
Q1 - тепловое сопротивление кристалл-корпус по справочнику,
Q2 - тепловое сопротивление корпус-радиатор.
Эта формула непререкаема и не должна вызывать никаких сомнений.
А вот формулы по переводу рассчитанного теплового сопротивления в площадь поверхности радиатора, выуженные из нашей справочной литературы -
не вызвали чувства глубокого удовлетворения, в связи с существенным несоответствием получаемых результатов суровой реальности жизни.
Пришлось искать правду в источниках империалистических агрессоров, а конкретно - в рекомендациях по выбору алюминиевых радиаторов
американской фирмы Aavid Thermalloy.
Информация эта неожиданно обнаружилась в электротехническом справочнике г-на Корякина-Черняка С. Л., за что ему большое человеческое
спасибо.
Теперь давайте определимся с терминологией.
S - площадь поверхности радиатора, равная удвоенной суммарной площади основания радиатора и всех площадей рёбер радиатора.
Почему удвоенной? Потому, что и основание, и все рёбра теплоотвода имеют по две поверхности, которыми и излучают тепло
в окружающее пространство.
Q - тепловое сопротивление между радиатором и окружающей средой. Спецификация большинства радиаторов содержит этот
параметр.
Q1 - тепловое сопротивление между кристаллом и корпусом силовых элементов обычно приводится в справочнике
и обозначается RthJC. Значение этой величины в основном зависит от типа корпуса и у современных транзисторов
составляет величину 0,4-1,5 (°С/Вт) или (К/Вт).
Q2 - значение теплового сопротивление корпус-радиатор стремиться к нулю в тех случаях, когда мы прикручиваем транзистор к
отполированной поверхности радиатора без изолирующих прокладок, или используем тонкие современные подложки из из оксида алюминия
(Al2O3), нитрида алюминия (AlN), или оксида бериллия (BeO). В случае применения слюды значение теплового сопротивления может составлять
0.2-1.5 (°С/Вт), в зависимости от толщины прокладки.
Т2 - максимальная температура кристалла транзистора, обозначается Tjmax и составляет для мощных транзисторов величину 120-175°С.
Т1 - максимально допустимая температура внутри корпуса, в котором находится радиатор, либо максимальная температура окружающей
среды, если рёбра радиатора выведены наружу.
ИТАК, РИСУЕМ ТАБЛИЧКУ ДЛЯ РАЧЁТА ПЛОЩАДИ РАДИАТОРА
- Максимальную температуру кристалла Т2 по возможности указываем на 20-30% ниже значения Tjmax, приведённого в
справочнике на полупроводник. Я бы рекомендовал подобрать это значение, исходя из температуры радиатора 60-70 градусов.
- Значение теплового сопротивления кристалл-корпус Q1 RthJC не гадая берём из справочника. Если совсем лень - ставим 1.
- Графу теплового сопротивления корпус-радиатор Q2 можно оставить без внимания, если транзистор сидит на радиаторе без всяких
прокладок, либо используются современные тонкие подложки, сдобренные специальными пастами. Если это не так, ищем в справочнике
параметр теплового сопротивления, на используемый вид подложки, и заносим его в таблицу.
- Так же оставляем в покое графу "скорость воздушного потока от вентилятора", если оный не предусмотрен нашей конструкцией.
А если предусмотрен, надо озадачиться выяснением этой самой величины скорости воздушного потока, омывающего наш теплоотвод.
Как? А приведу-ка я на следующей странице кусок главы из электротехнического справочника уважаемого автора Корякина-Черняка С. Л.,
посвящённый расчёту радиаторов, там кобыла и отыщется.
Как правило, значение этой величины находится в пределах 1-5 м/сек.
Если Вы вдруг озадачились рассеиванием на радиаторе слишком высоких мощностей, калькулятор может выдать отрицательные значения.
Смотрим формулу и видим - это нормально. Происходит это из-за ненулевого значения теплового сопротивления кристалл-корпус. Тут природу
не обманешь - надо либо поднимать значение максимальной температуры кристалла Т2, либо искать транзистор с меньшим тепловым
сопротивлением, либо сажать несколько транзисторов в параллель.
Теперь, что касается покупки радиатора по кропотливо рассчитанным нашей таблицей параметрам. Если производитель солидный, можно
воспользоваться приведённым в технической документации значением удельного теплового сопротивления. Параметр этот имеет размерность
дюйм*град/Вт, поэтому для пересчёта его в тепловое сопротивление всего радиатора, нам надо разделить это значение на длину в см.
и умножить на 2,54.
Если этот производитель Kinsten Industrial, или прочий китайский "no trademark" - воздержитесь от доверительных чувств
к указанному в DataSheet параметру теплового сопротивления, а лучше старательно, по приведённым чертежам, просчитайте суммарную
площадь подложки и граней, умножьте полученный результат на 2 и оценивайте возможность применения данной железяки в вашем
устройстве, исходя из общей площади поверхности радиатора.
С этим всё, дальше кусок из умного справочника.
|