Это нужно знать

Общий перечень знаний –
на этой странице



Линейные стабилизаторы напряжения на транзисторах и
интегральных микросхемах

Онлайн расчёт элементов схем линейных стабилизаторов с
фиксированным и регулируемым выходным напряжением

Для поддержания стабильной работы и сохранения заявленных параметров электрооборудования его питание в большинстве случаев должно осуществляться постоянным и неподконтрольным никаким внешним воздействиям напряжением. Как правило, эта функция возлагается на устройства, называемые стабилизатором напряжения.
Стабилизатор напряжения – это электронное устройство, предназначенное для поддержания уровня выходного напряжения в заданных пределах при изменениях следующих величин: входного напряжения, сопротивления нагрузки, температуры и иных внешних воздействий.

Ещё не так давно подобные узлы строились на стабилитронах и транзисторах, однако с появлением специализированных микросхем, необходимость в самостоятельном конструировании подобных схем скоротечно отпочковалась, ввиду очевидной простоты реализации стабилизаторов, выполненных на интегральных микросхемах. А зря!

Там, где значения коэффициента стабилизации Кст допустимо исчислять десятками, а не сотнями-тысячами, простейший параметрический стабилизатор не только имеет право на существование, но и выигрывает у своих интегральных собратьев по такому важному параметру, как чистота выходного напряжения и отсутствие импульсных помех в момент резкого изменения тока нагрузки.
Давайте рассмотрим такие простейшие устройства стабилизаторов напряжения.
Простейшие схемы линейных стабилизаторов напряжения
Рис.1 а) Базовая схема,   б) с повторителем,  в) с регулируемым напряжением

Схема стабилизатора напряжения, приведённая на Рис.1 а), используется в основном с устройствами, через которые не протекает существенных токов. От номинала резистора Rст зависит величина тока Iвх, протекающего как через стабилитрон, так и через нагрузку. Величина этого тока рассчитывается по формуле: Rст = (Uвх – Uст)/ Iвх,
а Iвх должен удовлетворять условию Iвх ≥ Iн. макс + Iст. мин, где Iн. макс – максимальный ток в нагрузке при заданном выходном напряжении, а Iст. мин – минимальный ток стабилизации стабилитрона, указанный в характеристиках полупроводника. В отечественных стабилитронах отечественных параметр Iст. мин, как правило, задан в явном виде, у зарубежных может быть не указан вообще. Куда податься бедному еврею? Я бы рекомендовал в этом случае ориентироваться на значение тока из datasheet-ов "Izk" (значение при котором стабилитрон обладает максимальным импедансом) и увеличить эту величину в 2...3 раза. Хотя, по большому счёту, оптимальным (с точки зрения достижения максимальных параметров) током для стабилитрона является тестовый ток, при котором измеряются основные характеристики полупроводника.

Для наиболее эффективного выполнения своих задач стабилитрону довольно важно, чтобы мощность нагрузки не превышала мощности, рассеиваемой на полупроводнике. Поэтому если возникает потребность стабилизации напряжения в нагрузках, потребляющих значительную мощность, используется дополнительный усилитель тока – эмиттерный повторитель (Рис.1 б)). В этом случае нагрузкой для стабилитрона является входное сопротивление повторителя Rвх ≈ Rн x (1 + β), т.е. ток нагрузки можно увеличить в β раз. Тут важно учитывать падение напряжения на эмиттерном переходе транзистора, в связи с чем напряжение на выходе стабилизатора будет на 0,6...0,7 В (на 1,2...1,4 В для составного транзистора) меньше напряжения стабилизации стабилитрона.

Установив параллельно стабилитрону переменный резистор (Рис.1 в)), возникает возможность изменять напряжение стабилизации в нагрузке от нуля почти до максимального значения напряжения стабилизации стабилитрона (за вычетом падения напряжения Uбэ на переходе транзистора). Естественно, что ток, протекающий через переменник, также необходимо учитывать, задаваясь его значением – не меньшим, чем входной ток эмиттерного повторителя.
Сдобрим пройденный материал онлайн калькулятором.

Онлайн расчёт элементов линейного стабилизатора напряжения

 Выбор схемы стабилизатора
 Входное напряжение Uвх (В)
 Выходное напряжение Uвых (В)
 Макс. выходной ток Iн (мА)
 Мин. ток стабилизации стабилитрона (мА)
 β транзистора (в схемах б) и в))
  
 Сопротивление R1 (кОм) (не более)
 Ток через стабилитрон без нагрузки (мА)
 Напряжение стабилизации стабилитрона (В)
 Номинал потенциом. Rп (для схемы в)) (кОм) 

Схемы компенсационных линейных стабилизаторов являются основой большинства интегральных микросхем, выполняющих функцию стабилизации напряжений и токов, и в простейшем виде могут быть выполнены на стабилитроне и паре транзисторов (Рис.2).
Схемы компенсационных линейных стабилизаторов напряжения
Рис.2 Схемы компенсационных линейных стабилизаторов напряжения

Здесь стабилитрон является источником опорного напряжения, а транзистор Т2 – устройством сравнения выходного напряжения, поступающего через резистивный делитель на его базу, с опорным значением напряжения на его эмиттере. Повысилось выходное напряжение, а вместе с ним напряжение на базе Т2, транзистор приоткрывается и притягивает напряжение на базе регулирующего транзистора Т1 к минусовой (земляной) шине, тем самым, уменьшая напряжение на его эмиттере, а соответственно и на выходе схемы. Снизилось выходное напряжение – всё то же самое, только наоборот. Компенсационные стабилизаторы на транзисторах имеют более высокий коэффициент стабилизации по сравнению с устройствами, представленными на Рис.1, но в связи наличием обратной связи имеют и свои недостатки.
В связи с этим подробно останавливаться на них мы не будем, а перейдём сразу к интегральным стабилизаторам, имеющим похожий принцип действия, но значительно более сложным по структуре, обладающих более высокими характеристиками и при этом – очень простых и удобных в реализации.

Существует 2 типа подобных интегральных микросхем: регулируемые стабилизаторы напряжения и стабилизаторы с фиксированным значением выходного напряжения. Во втором случае схема стабилизатора приобретает неприлично примитивный вид, незаслуживающий какого-то серьёзного обсуждения.
В случае же стабилизаторов с регулируемым выходным напряжением, схема всё ещё остаётся достаточно простой, но требует некоторых умственных манипуляций, связанных с расчётом резистивного делителя для получения требуемого выходного напряжения.

Типовая схема включения большинства представителей регулируемых микросхем стабилизаторов напряжения приведена на Рис.3.

Рис.3 Типовая схема включения интегральных стабилизаторов напряжения

Формула для расчёта выходного напряжения имеет вид:
Vout = Vref x (1+R2/R1) + Iadj x R2,
причём номинал сопротивления R1, как правило, задаётся производителем микросхемы для достижения наилучших параметров выходных характеристик.

Отдельные бойцы для снижения пульсаций ставят дополнительные электролиты значительных величин параллельно резистору R2. Оно, конечно, бойцы эти герои, но зачем же стулья ломать?
Любое резкое увеличение тока нагрузки, приводящее к снижению выходного напряжения, не сможет моментально отработаться схемой автоматической регулировки из-за задержки в цепи обратной связи, обусловленной данным конденсатором, а это в значительной степени снизит быстродействие устройства.
И если для статических нагрузок параметр быстродействия стабилизатора по барабану, то для динамических (к примеру, таких как УНЧ) – очень даже немаловажен. Поэтому – либо эти электролиты вообще не нужны, либо (если их настоятельно рекомендует Datasheet) ставить конденсаторы небольших номиналов в строгом соответствии с рекомендациями производителя.

Для начала приведём справочную таблицу с техническими характеристиками наиболее часто используемых интегральных стабилизаторов с регулировкой выходного напряжения.

Тип U вх макс,
В
І вых макс,
А
І вых мин,
мА
U вых мин,
  В
U вых макс,
  В
КР142ЕН11 -40  1,5 10  -1,2  -37
КР142ЕН12 40 1,5 10 1,2 37
КР142ЕН18 -40  1,5 10  -1,2  -37
КР142ЕН22 35 5 10 1,25 34
КР142ЕН22А 35 7,5 10 1,25 34
КР142ЕН22Б 35 10 10 1,25 34
LT1083 35 7,5 10 1,2 34
LT1084 35 5 10 1,2 34
LT1085 35 3 10 1,2 34
LM117 40 1,5 5 1,2 37
LM137 -40  1,5 10  -1,2  -37
LM138 35 5 10 1,2 32
LM150 35 5 10 1,2 33
LM217 40 1,5 5 1,2 37
LM317 40 1,5 5 1,2 37
LM317LZ 40 0,1 5 1,2 37
LM337 -40  1,5 10  -1,2  -37
LM337LZ -40  0,1 10  -1,2  -37
LM338 35 5 10 1,2 32
LM350 35 3 10 1,2 33
TL783 126 0,7 0,1 1,25 125


А калькулятор, приведённый ниже, позволяет в режиме онлайн рассчитать номиналы резисторов делителя некоторых популярных типов микросхем регулируемых стабилизаторов, представленных разными производителями.

Расчёт резистивных элементов интегральных стабилизаторов
напряжения


 Выбор микросхемы стабилизатора
 Выходное напряжение Uвых (В)
  
 Сопротивление R1 (Ом)
 Сопротивление R2 (Ом)
 Максимально допустимое входное напряжение (В) 
 Максимальный ток нагрузки (А)
 Комментарии при ошибке ввода

Если не хотите, чтобы вдруг "раздался мощный пук" – послеживайте за полярностью включения конденсатора С2. Она должна совпадать с полярностью входного (выходного) напряжения.

Имеет смысл отдельно остановиться на микромощных стабилизаторах с малым собственным потреблением тока.

Такого рода стабилизаторы окажутся совсем не лишними в хозяйстве, так как смогут обеспечить такой важнейший показатель радиоэлектронной аппаратуры с автономным питанием, как экономичность входящих в её состав узлов.

Здесь выбор интегральных микросхем заметно беднее, а цены, как правило, заметно ощутимей, чем на аналоги со стандартным потреблением, поэтому начну я с простой, но проверенной временем схемы на дискретных элементах.

Рис.4 Схема микромощного стабилизатора напряжения на транзисторах

Чем хорош КТ315 в данном включении?
На обратно смещённом переходе КТ315 при напряжении 6...7,5В, в зависимости от экземпляра транзистора, возникает электрический (не побоюсь этого слова) пробой, что позволяет использовать его в качестве стабилитрона на эту-же самую величину напряжения пробоя. При этом транзистор в таком включении, в отличие от многих промышленных стабилитронов, хорошо работает и при малых токах стабилизации, порядка 100 мкА.

Из числа относительно гуманных по цене интегральных стабилизаторов с малым собственным потреблением, можно порекомендовать ИМС: LP2950, LP2951, LM2931, LM2936 и им подобные.



 

Главная страница | Наши разработки | Полезные схемы | Это нужно знать | Вопросы-ответы | Весёлый перекур
© 2017 Vpayaem.ru   All Rights Reserved

     
     

Линейные стабилизаторы напряжения на транзисторах и
интегральных микросхемах

Онлайн расчёт элементов схем линейных стабилизаторов с
фиксированным и регулируемым выходным напряжением

Для поддержания стабильной работы и сохранения заявленных параметров электрооборудования его питание в большинстве случаев должно осуществляться постоянным и неподконтрольным никаким внешним воздействиям напряжением. Как правило, эта функция возлагается на устройства, называемые стабилизатором напряжения.
Стабилизатор напряжения – это электронное устройство, предназначенное для поддержания уровня выходного напряжения в заданных пределах при изменениях следующих величин: входного напряжения, сопротивления нагрузки, температуры и иных внешних воздействий.

Ещё не так давно подобные узлы строились на стабилитронах и транзисторах, однако с появлением специализированных микросхем, необходимость в самостоятельном конструировании подобных схем скоротечно отпочковалась, ввиду очевидной простоты реализации стабилизаторов, выполненных на интегральных микросхемах. А зря!

Там, где значения коэффициента стабилизации Кст допустимо исчислять десятками, а не сотнями-тысячами, простейший параметрический стабилизатор не только имеет право на существование, но и выигрывает у своих интегральных собратьев по такому важному параметру, как чистота выходного напряжения и отсутствие импульсных помех в момент резкого изменения тока нагрузки.
Давайте рассмотрим такие простейшие устройства стабилизаторов напряжения.
Простейшие схемы линейных стабилизаторов напряжения
Рис.1 а) Базовая схема,   б) с повторителем,  в) с регулируемым напряжением

Схема стабилизатора напряжения, приведённая на Рис.1 а), используется в основном с устройствами, через которые не протекает существенных токов. От номинала резистора Rст зависит величина тока Iвх, протекающего как через стабилитрон, так и через нагрузку. Величина этого тока рассчитывается по формуле: Rст = (Uвх – Uст)/ Iвх,
а Iвх должен удовлетворять условию Iвх ≥ Iн. макс + Iст. мин, где Iн. макс – максимальный ток в нагрузке при заданном выходном напряжении, а Iст. мин – минимальный ток стабилизации стабилитрона, указанный в характеристиках полупроводника. В отечественных стабилитронах отечественных параметр Iст. мин, как правило, задан в явном виде, у зарубежных может быть не указан вообще. Куда податься бедному еврею? Я бы рекомендовал в этом случае ориентироваться на значение тока из datasheet-ов "Izk" (значение при котором стабилитрон обладает максимальным импедансом) и увеличить эту величину в 2...3 раза. Хотя, по большому счёту, оптимальным (с точки зрения достижения максимальных параметров) током для стабилитрона является тестовый ток, при котором измеряются основные характеристики полупроводника.

Для наиболее эффективного выполнения своих задач стабилитрону довольно важно, чтобы мощность нагрузки не превышала мощности, рассеиваемой на полупроводнике. Поэтому если возникает потребность стабилизации напряжения в нагрузках, потребляющих значительную мощность, используется дополнительный усилитель тока – эмиттерный повторитель (Рис.1 б)). В этом случае нагрузкой для стабилитрона является входное сопротивление повторителя Rвх ≈ Rн x (1 + β), т.е. ток нагрузки можно увеличить в β раз. Тут важно учитывать падение напряжения на эмиттерном переходе транзистора, в связи с чем напряжение на выходе стабилизатора будет на 0,6...0,7 В (на 1,2...1,4 В для составного транзистора) меньше напряжения стабилизации стабилитрона.

Установив параллельно стабилитрону переменный резистор (Рис.1 в)), возникает возможность изменять напряжение стабилизации в нагрузке от нуля почти до максимального значения напряжения стабилизации стабилитрона (за вычетом падения напряжения Uбэ на переходе транзистора). Естественно, что ток, протекающий через переменник, также необходимо учитывать, задаваясь его значением – не меньшим, чем входной ток эмиттерного повторителя.
Сдобрим пройденный материал онлайн калькулятором.

Онлайн расчёт элементов линейного стабилизатора напряжения

 Выбор схемы стабилизатора
 Входное напряжение Uвх (В)
 Выходное напряжение Uвых (В)
 Макс. выходной ток Iн (мА)
 Мин. ток стабилизации стабилитрона (мА)
 β транзистора (в схемах б) и в))
  
 Сопротивление R1 (кОм) (не более)
 Ток через стабилитрон без нагрузки (мА)
 Напряжение стабилизации стабилитрона (В)
 Номинал потенциом. Rп (для схемы в)) (кОм) 

Схемы компенсационных линейных стабилизаторов являются основой большинства интегральных микросхем, выполняющих функцию стабилизации напряжений и токов, и в простейшем виде могут быть выполнены на стабилитроне и паре транзисторов (Рис.2).
Схемы компенсационных линейных стабилизаторов напряжения
Рис.2 Схемы компенсационных линейных стабилизаторов напряжения

Здесь стабилитрон является источником опорного напряжения, а транзистор Т2 – устройством сравнения выходного напряжения, поступающего через резистивный делитель на его базу, с опорным значением напряжения на его эмиттере. Повысилось выходное напряжение, а вместе с ним напряжение на базе Т2, транзистор приоткрывается и притягивает напряжение на базе регулирующего транзистора Т1 к минусовой (земляной) шине, тем самым, уменьшая напряжение на его эмиттере, а соответственно и на выходе схемы. Снизилось выходное напряжение – всё то же самое, только наоборот. Компенсационные стабилизаторы на транзисторах имеют более высокий коэффициент стабилизации по сравнению с устройствами, представленными на Рис.1, но в связи наличием обратной связи имеют и свои недостатки.
В связи с этим подробно останавливаться на них мы не будем, а перейдём сразу к интегральным стабилизаторам, имеющим похожий принцип действия, но значительно более сложным по структуре, обладающих более высокими характеристиками и при этом – очень простых и удобных в реализации.

Существует 2 типа подобных интегральных микросхем: регулируемые стабилизаторы напряжения и стабилизаторы с фиксированным значением выходного напряжения. Во втором случае схема стабилизатора приобретает неприлично примитивный вид, незаслуживающий какого-то серьёзного обсуждения.
В случае же стабилизаторов с регулируемым выходным напряжением, схема всё ещё остаётся достаточно простой, но требует некоторых умственных манипуляций, связанных с расчётом резистивного делителя для получения требуемого выходного напряжения.

Типовая схема включения большинства представителей регулируемых микросхем стабилизаторов напряжения приведена на Рис.3.

Рис.3 Типовая схема включения интегральных стабилизаторов напряжения

Формула для расчёта выходного напряжения имеет вид:
Vout = Vref x (1+R2/R1) + Iadj x R2,
причём номинал сопротивления R1, как правило, задаётся производителем микросхемы для достижения наилучших параметров выходных характеристик.

Отдельные бойцы для снижения пульсаций ставят дополнительные электролиты значительных величин параллельно резистору R2. Оно, конечно, бойцы эти герои, но зачем же стулья ломать?
Любое резкое увеличение тока нагрузки, приводящее к снижению выходного напряжения, не сможет моментально отработаться схемой автоматической регулировки из-за задержки в цепи обратной связи, обусловленной данным конденсатором, а это в значительной степени снизит быстродействие устройства.
И если для статических нагрузок параметр быстродействия стабилизатора по барабану, то для динамических (к примеру, таких как УНЧ) – очень даже немаловажен. Поэтому – либо эти электролиты вообще не нужны, либо (если их настоятельно рекомендует Datasheet) ставить конденсаторы небольших номиналов в строгом соответствии с рекомендациями производителя.

Для начала приведём справочную таблицу с техническими характеристиками наиболее часто используемых интегральных стабилизаторов с регулировкой выходного напряжения.

Тип U вх макс,
В
І вых макс,
А
І вых мин,
мА
U вых мин,
  В
U вых макс,
  В
КР142ЕН11 -40  1,5 10  -1,2  -37
КР142ЕН12 40 1,5 10 1,2 37
КР142ЕН18 -40  1,5 10  -1,2  -37
КР142ЕН22 35 5 10 1,25 34
КР142ЕН22А 35 7,5 10 1,25 34
КР142ЕН22Б 35 10 10 1,25 34
LT1083 35 7,5 10 1,2 34
LT1084 35 5 10 1,2 34
LT1085 35 3 10 1,2 34
LM117 40 1,5 5 1,2 37
LM137 -40  1,5 10  -1,2  -37
LM138 35 5 10 1,2 32
LM150 35 5 10 1,2 33
LM217 40 1,5 5 1,2 37
LM317 40 1,5 5 1,2 37
LM317LZ 40 0,1 5 1,2 37
LM337 -40  1,5 10  -1,2  -37
LM337LZ -40  0,1 10  -1,2  -37
LM338 35 5 10 1,2 32
LM350 35 3 10 1,2 33
TL783 126 0,7 0,1 1,25 125


А калькулятор, приведённый ниже, позволяет в режиме онлайн рассчитать номиналы резисторов делителя некоторых популярных типов микросхем регулируемых стабилизаторов, представленных разными производителями.

Расчёт резистивных элементов интегральных стабилизаторов
напряжения


 Выбор микросхемы стабилизатора
 Выходное напряжение Uвых (В)
  
 Сопротивление R1 (Ом)
 Сопротивление R2 (Ом)
 Максимально допустимое входное напряжение (В) 
 Максимальный ток нагрузки (А)
 Комментарии при ошибке ввода

Если не хотите, чтобы вдруг "раздался мощный пук" – послеживайте за полярностью включения конденсатора С2. Она должна совпадать с полярностью входного (выходного) напряжения.

Имеет смысл отдельно остановиться на микромощных стабилизаторах с малым собственным потреблением тока.

Такого рода стабилизаторы окажутся совсем не лишними в хозяйстве, так как смогут обеспечить такой важнейший показатель радиоэлектронной аппаратуры с автономным питанием, как экономичность входящих в её состав узлов.

Здесь выбор интегральных микросхем заметно беднее, а цены, как правило, заметно ощутимей, чем на аналоги со стандартным потреблением, поэтому начну я с простой, но проверенной временем схемы на дискретных элементах.

Рис.4 Схема микромощного стабилизатора напряжения на транзисторах

Чем хорош КТ315 в данном включении?
На обратно смещённом переходе КТ315 при напряжении 6...7,5В, в зависимости от экземпляра транзистора, возникает электрический (не побоюсь этого слова) пробой, что позволяет использовать его в качестве стабилитрона на эту-же самую величину напряжения пробоя. При этом транзистор в таком включении, в отличие от многих промышленных стабилитронов, хорошо работает и при малых токах стабилизации, порядка 100 мкА.

Из числа относительно гуманных по цене интегральных стабилизаторов с малым собственным потреблением, можно порекомендовать ИМС: LP2950, LP2951, LM2931, LM2936 и им подобные.



  ==================================================================