Свежие новости
10.10.2018 Для всех нуждающих- ся в компрессии.
Три схемы компрессоров аудио- сигнала на полевых транзисторах для: трансиверов, музыкальных инструментов, вокалистов и про- чих нуждающихся.

Все остальные новости обитают на главной странице



Три схемы аудио компрессоров на полевых транзисторах

Звуковые FET компрессоры-лимитеры для трансиверов, музыкальных инструментов, певцов-вокалистов и пр., нуждающихся в компрессии

Давайте пока отложим в сторону схему с предыдущей страницы и порассуждаем на тему: а в какое, собственно, место компрессора нам следует затолкать управляющий элемент – полевой транзистор.

Популярное среди некоторых схемотехников расположение данного элемента в составе делителя на входе схемы с последующим усилением сигнала посредством ОУ (либо схемой на дискретных элементах) имеет существенный недостаток. Заключается он в том, что при высокой степени компрессии, коэффициент усиления ОУ Ku должен быть так же высок. Результат – постоянно присутствующий на выходе устройства шум, равный приведённому ко входу уровню шума ОУ, умноженному на Ku усилителя. Причём амплитуда этого шума будет постоянна и независима ни от уровня входного сигнала, ни от степени компрессии.

Другое дело, если управляющий элемент включить цепь обратной связи усилителя и регулировать им коэффициент усиления компрессора. При таком раскладе – максимальный уровень шумов на выходе будет присутствовать при нулевом, либо низком уровне входного сигнала, т. е. до момента превышения им порога срабатывания компрессора. При желании отсечь этот шум, достаточно произвести дополнительную обработку сигнала посредством простого порогового шумоподавителя.
По мере роста амплитуды сигнала и превышения им порога срабатывания, шумы на выходе устройства начинают ослабляться пропорционально амплитуде входного напряжения. Плодотворный итог – менее зашумлённый (по сравнению с предыдущей версией) полезный сигнал.

Ну и хватит на этом – пора переходить к схемам. Начнём с самой простой.
Простейшая схема звукового FET компрессора
Рис.1 Простейшая схема звукового FET компрессора

Компрессор, изображённый на Рис.1, отлично справится как с функцией АРУ в приёмниках прямого преобразования, так и будет неплох в качестве микрофонного, либо гитарного компрессора.

Устройство реализовано на ОУ TL071 с нормированным коэффициентом шума и выполняет сжатие динамического диапазона звукового сигнала за счёт каскада на полевом транзисторе Т1.
Напряжение звуковой частоты с выхода ОУ детектируется при помощи эмиттерного детектора (аналог катодного), выполненного на транзисторе Т2, преобразуя его в положительное постоянное напряжение, формирующееся на накопительном конденсаторе С8.
Эмиттерный детектор позволяет заряжать эту ёмкость гораздо большими токами (а потому и значительно быстрее) по сравнению с диодными и интегральными (К157ДА1) узлами, предоставляя пользователю приятную возможность получать более быстрые значения атаки скомпрессированного сигнала.

Итак, время заряда накопительного конденсатора, оно же – время атаки (Attack), регулируется переменным резистором R14 в диапазоне 1...50 мсек, а время разряда, оно же – время спада (Release) резистором R12 в диапазоне 0,3...3 сек.

Напряжение, сформированное на детекторе, воздействует на затвор полевого транзистора р-типа Т1.
При нулевом напряжении на затворе транзистора сопротивление сток-исток Rcи минимально (200...250 Ом), а усиление максимально: Ku=1+300k/(R2+Rcи).
При увеличении уровня выходного сигнала увеличивается постоянное напряжение на затворе и, соответственно, возрастает сопротивление перехода Rcи транзистора. Это приводит к изменению коэффициент обратной связи и, как результат, уменьшению коэффициента усиления ОУ. А итогом такой работы является стабилизация напряжения звуковой частоты по амплитуде на выходе ОУ.

Изменением сопротивления переменного резистора R2 регулируется начальный (допороговый) коэффициент усиления ОУ, а заодно и степень компрессии (Ratio) звукового сигнала. Чем меньше значение R2, тем выше интенсивность сжатия сигнала.

Резистор R8 устанавливает начальное напряжение на затворе полевика, а по совместительству – пороговый уровень срабатывания (Threshold) компрессора.

Цепочка обратной связи вокруг Т1, образованная элементами R5-С4-R11, улучшает линейность характеристик полевого транзистора и позволяет в 2-3 раза снизить коэффициент нелинейный искажений устройства при значительных уровнях входного сигнала.

Ну что ж, схема прочёсана, обсосана и обгрызена со всех сторон не впустую! Время, потраченное на осознание простейшего продукта, позволит нам не сильно тужиться, врубаясь в схемы посложнее.
Компрессор для гитары
Рис.2 Ещё одна схема звукового FET компрессора

На первый взгляд, может показаться, что схема, приведённая на Рис.2 отличается от предыдущей только присутствием входного усилителя на полевом транзисторе Т1. Однако это не совсем так.
Ранее описанный компрессор (Рис.1) производит усиление слабых сигналов (чем ниже уровень, тем сильнее усиление) и пропускает на выход без усиления сигналы высоких уровней. И если для большинства приложений это не является существенным недостатком, то для бескомпромиссных владельцев рельсовых хамбакеров присутствие прямого (нескомпрессированного) сигнала в начальные моменты жёсткой атаки может вызвать справедливое раздражение.

Так вот, приведённая на Рис.2 схема компрессора данного недостатка лишена.
Устройство не только усиливает слабые, но ослабляет сигналы высоких уровней. Допороговое усиление данной схемы составляет Ku=R11/[2(R2+Rcи)], а ослабление мощных сигналов составляет значительную величину, зависящую только от точности подбора номиналов резисторов R8-R11.

Входной каскад на транзисторе Т1 обеспечивает предварительное усиление низкоуровневых сигналов, а для источников, не требующих усиления (таких как электрогитара и пр.), важным фактором будет являться высокое входное сопротивление компрессора.
Коэффициент усиления каскада регулируется переменным резистором R6 в пределах 0...26дБ (1...20 по напряжению).

Всё остальное работает по аналогии с предыдущей схемой.

И наконец, переходим к главной цели нашего сегодняшнего мероприятия – универсальному компрессору, позволяющему выполнять широкий спектр задач по сжатию динамического диапазона звукового сигнала.
Универсальный  FET компрессор звукового сигнала
Рис.3 Универсальный FET компрессор звукового сигнала

Главным отличием схемы, приведённой на Рис.3, от предыдущей является возможность работы устройства не только в режиме классической компрессии, но и в режиме лимитера. Режим этот характеризуется очень низким временем атаки и умеренным временем спада и напоминает действие диодного ограничителя, только без изменения спектральных характеристик обрабатываемого сигнала.
А поскольку R-C цепочка, определяющая время спада, одновременно является и сглаживающим фильтром эмиттерного детектора, то уменьшение постоянной времени интегрирующей цепи приведёт к пропорциональному росту пульсаций на затворе управляющего элемента и, как результат, такому же пропорциональному увеличению уровня нелинейных искажений компрессора.

Выход из сложившейся ситуации лежит на поверхности - сделать детектор двухполупериодным.
Наиболее просто эту задача решается введением дополнительного инвертирующего каскада (ОР1.2) и ещё одного транзистора (Т4), отвечающего за детектирование отрицательной полуволны, которая после ОР1.2 становится положительной.
Переключатель S1 отвечает за выбор режима сжатия "Лимитер"/"Компрессор", посредством изменения в 11 раз величины накопительного конденсатора (С14 против С14+С12). В такое же количество раз изменяются времена атаки и восстановления компрессора.

Для расширения пределов регулировки степени сжатия в сторону уменьшения величины этого параметра, в схему введён дополнительный переменный резистор R27, ослабляющий регулирующие действия управляющего транзистора и позволяющий достигать уменьшение этого параметра вплоть до 1:1, т.е. полного отсутствия компрессии.

Работа остальных узлов была тщательно изложена в предыдущих повествованиях.

Технические характеристики итогового компрессора:

 Входное сопротивление:     1Мом;
 Потребляемый ток:     не более 6мА;
 Порог срабатывания (Threshold):    0,1...2В;
 Глубина компрессии (Ratio):    1:1 – 1:20;
 Время атаки в режиме "Компрессор" (Attack):     1...50 мсек;
 Время атаки в режиме "Лимитер" (Attack):     0,1...5 мсек;
 Время спада в режиме "Компрессор" (Release):     0,3...3 сек;
 Время спада в режиме "Лимитер" (Release):     30...300 мсек;
 Коэффициент нелинейных искажений при Uвх=100мВ:     не более 0,1% (1кГц).




      Назад     

 

Главная страница | Наши разработки | Полезные схемы | Это нужно знать | Вопросы-ответы | Весёлый перекур
© 2017 Vpayaem.ru   All Rights Reserved

     
     

Три схемы аудио компрессоров на полевых транзисторах

Звуковые FET компрессоры-лимитеры для трансиверов, музыкальных инструментов, певцов-вокалистов и пр., нуждающихся в компрессии

Давайте пока отложим в сторону схему с предыдущей страницы и порассуждаем на тему: а в какое, собственно, место компрессора нам следует затолкать управляющий элемент – полевой транзистор.

Популярное среди некоторых схемотехников расположение данного элемента в составе делителя на входе схемы с последующим усилением сигнала посредством ОУ (либо схемой на дискретных элементах) имеет существенный недостаток. Заключается он в том, что при высокой степени компрессии, коэффициент усиления ОУ Ku должен быть так же высок. Результат – постоянно присутствующий на выходе устройства шум, равный приведённому ко входу уровню шума ОУ, умноженному на Ku усилителя. Причём амплитуда этого шума будет постоянна и независима ни от уровня входного сигнала, ни от степени компрессии.

Другое дело, если управляющий элемент включить цепь обратной связи усилителя и регулировать им коэффициент усиления компрессора. При таком раскладе – максимальный уровень шумов на выходе будет присутствовать при нулевом, либо низком уровне входного сигнала, т. е. до момента превышения им порога срабатывания компрессора. При желании отсечь этот шум, достаточно произвести дополнительную обработку сигнала посредством простого порогового шумоподавителя.
По мере роста амплитуды сигнала и превышения им порога срабатывания, шумы на выходе устройства начинают ослабляться пропорционально амплитуде входного напряжения. Плодотворный итог – менее зашумлённый (по сравнению с предыдущей версией) полезный сигнал.

Ну и хватит на этом – пора переходить к схемам. Начнём с самой простой.
Простейшая схема звукового FET компрессора
Рис.1 Простейшая схема звукового FET компрессора

Компрессор, изображённый на Рис.1, отлично справится как с функцией АРУ в приёмниках прямого преобразования, так и будет неплох в качестве микрофонного, либо гитарного компрессора.

Устройство реализовано на ОУ TL071 с нормированным коэффициентом шума и выполняет сжатие динамического диапазона звукового сигнала за счёт каскада на полевом транзисторе Т1.
Напряжение звуковой частоты с выхода ОУ детектируется при помощи эмиттерного детектора (аналог катодного), выполненного на транзисторе Т2, преобразуя его в положительное постоянное напряжение, формирующееся на накопительном конденсаторе С8.
Эмиттерный детектор позволяет заряжать эту ёмкость гораздо большими токами (а потому и значительно быстрее) по сравнению с диодными и интегральными (К157ДА1) узлами, предоставляя пользователю приятную возможность получать более быстрые значения атаки скомпрессированного сигнала.

Итак, время заряда накопительного конденсатора, оно же – время атаки (Attack), регулируется переменным резистором R14 в диапазоне 1...50 мсек, а время разряда, оно же – время спада (Release) резистором R12 в диапазоне 0,3...3 сек.

Напряжение, сформированное на детекторе, воздействует на затвор полевого транзистора р-типа Т1.
При нулевом напряжении на затворе транзистора сопротивление сток-исток Rcи минимально (200...250 Ом), а усиление максимально: Ku=1+300k/(R2+Rcи).
При увеличении уровня выходного сигнала увеличивается постоянное напряжение на затворе и, соответственно, возрастает сопротивление перехода Rcи транзистора. Это приводит к изменению коэффициент обратной связи и, как результат, уменьшению коэффициента усиления ОУ. А итогом такой работы является стабилизация напряжения звуковой частоты по амплитуде на выходе ОУ.

Изменением сопротивления переменного резистора R2 регулируется начальный (допороговый) коэффициент усиления ОУ, а заодно и степень компрессии (Ratio) звукового сигнала. Чем меньше значение R2, тем выше интенсивность сжатия сигнала.

Резистор R8 устанавливает начальное напряжение на затворе полевика, а по совместительству – пороговый уровень срабатывания (Threshold) компрессора.

Цепочка обратной связи вокруг Т1, образованная элементами R5-С4-R11, улучшает линейность характеристик полевого транзистора и позволяет в 2-3 раза снизить коэффициент нелинейный искажений устройства при значительных уровнях входного сигнала.

Ну что ж, схема прочёсана, обсосана и обгрызена со всех сторон не впустую! Время, потраченное на осознание простейшего продукта, позволит нам не сильно тужиться, врубаясь в схемы посложнее.
Компрессор для гитары
Рис.2 Ещё одна схема звукового FET компрессора

На первый взгляд, может показаться, что схема, приведённая на Рис.2 отличается от предыдущей только присутствием входного усилителя на полевом транзисторе Т1. Однако это не совсем так.
Ранее описанный компрессор (Рис.1) производит усиление слабых сигналов (чем ниже уровень, тем сильнее усиление) и пропускает на выход без усиления сигналы высоких уровней. И если для большинства приложений это не является существенным недостатком, то для бескомпромиссных владельцев рельсовых хамбакеров присутствие прямого (нескомпрессированного) сигнала в начальные моменты жёсткой атаки может вызвать справедливое раздражение.

Так вот, приведённая на Рис.2 схема компрессора данного недостатка лишена.
Устройство не только усиливает слабые, но ослабляет сигналы высоких уровней. Допороговое усиление данной схемы составляет Ku=R11/[2(R2+Rcи)], а ослабление мощных сигналов составляет значительную величину, зависящую только от точности подбора номиналов резисторов R8-R11.

Входной каскад на транзисторе Т1 обеспечивает предварительное усиление низкоуровневых сигналов, а для источников, не требующих усиления (таких как электрогитара и пр.), важным фактором будет являться высокое входное сопротивление компрессора.
Коэффициент усиления каскада регулируется переменным резистором R6 в пределах 0...26дБ (1...20 по напряжению).

Всё остальное работает по аналогии с предыдущей схемой.

И наконец, переходим к главной цели нашего сегодняшнего мероприятия – универсальному компрессору, позволяющему выполнять широкий спектр задач по сжатию динамического диапазона звукового сигнала.
Универсальный  FET компрессор звукового сигнала
Рис.3 Универсальный FET компрессор звукового сигнала

Главным отличием схемы, приведённой на Рис.3, от предыдущей является возможность работы устройства не только в режиме классической компрессии, но и в режиме лимитера. Режим этот характеризуется очень низким временем атаки и умеренным временем спада и напоминает действие диодного ограничителя, только без изменения спектральных характеристик обрабатываемого сигнала.
А поскольку R-C цепочка, определяющая время спада, одновременно является и сглаживающим фильтром эмиттерного детектора, то уменьшение постоянной времени интегрирующей цепи приведёт к пропорциональному росту пульсаций на затворе управляющего элемента и, как результат, такому же пропорциональному увеличению уровня нелинейных искажений компрессора.

Выход из сложившейся ситуации лежит на поверхности - сделать детектор двухполупериодным.
Наиболее просто эту задача решается введением дополнительного инвертирующего каскада (ОР1.2) и ещё одного транзистора (Т4), отвечающего за детектирование отрицательной полуволны, которая после ОР1.2 становится положительной.
Переключатель S1 отвечает за выбор режима сжатия "Лимитер"/"Компрессор", посредством изменения в 11 раз величины накопительного конденсатора (С14 против С14+С12). В такое же количество раз изменяются времена атаки и восстановления компрессора.

Для расширения пределов регулировки степени сжатия в сторону уменьшения величины этого параметра, в схему введён дополнительный переменный резистор R27, ослабляющий регулирующие действия управляющего транзистора и позволяющий достигать уменьшение этого параметра вплоть до 1:1, т.е. полного отсутствия компрессии.

Работа остальных узлов была тщательно изложена в предыдущих повествованиях.

Технические характеристики итогового компрессора:

 Входное сопротивление:     1Мом;
 Потребляемый ток:     не более 6мА;
 Порог срабатывания (Threshold):    0,1...2В;
 Глубина компрессии (Ratio):    1:1 – 1:20;
 Время атаки в режиме "Компрессор" (Attack):     1...50 мсек;
 Время атаки в режиме "Лимитер" (Attack):     0,1...5 мсек;
 Время спада в режиме "Компрессор" (Release):     0,3...3 сек;
 Время спада в режиме "Лимитер" (Release):     30...300 мсек;
 Коэффициент нелинейных искажений при Uвх=100мВ:     не более 0,1% (1кГц).




      Назад     

  ==================================================================