Онлайн расчёт LC - фильтров.
Калькуляторы ФНЧ, ФВЧ, резонансных, полосовых LC - фильтров.


LC - фильтры я оставил на десерт, подобно бутылке благородного вина, покрытой слоем вековой пыли. Это антиквариат, который на Сотбисе не купишь!

Как ни крути, а не получил бы Александр Степаныч наш Попов звание почётного инженера-электрика, не направь он искровой разряд напрямик в колебательный контур для обретения благословения свыше и резонанса с передающей антенной.
И заскучала бы братва копателей свободной энергии эфира, не изобрети Никола Тесла свой резонансный трансформатор и электрический автомобиль с неведомой коробочкой. А то и вовсе, заширялась бы в подъездах, лишённая идей вселенского масштаба.

И начнём мы с расчёта самого простого LC-фильтра - колебательного контура.


Включённый по приведённой на рис.1 схеме, он представляет собой узкополосный полосовой фильтр, настроенный на частоту fо= 1/2π√.
На резонансной частоте сопротивление контура равно:
Rо = pQ, где р - характеристическое сопротивление, равное реактивному сопротивлению катушки и конденсатора.
Оно в свою очередь рассчитывается по формуле р = √L/C.

Рис.1

На низких (звуковых) частотах конденсаторы практически не вносят потерь, поэтому добротность контура равна добротности катушки индуктивности, величина которой напрямую зависит от активного сопротивления катушки. Чем ниже частота, тем больше витков и тоньше провод, тем проще его измерить тестером. Если эта попытка удалась, то Q=2πfL/R, где R – активное сопротивление катушки индуктивности.
На радиочастотах значение активного сопротивления катушки может составлять доли ома, поэтому для расчёта добротности надо - либо найти сопротивление в Омах по формуле R= 4ρ*L/(πd²), где ρ — удельное сопротивление меди, равное 0,017 Ом•мм²/м, L - длина в метрах, d - диаметр провода в мм, либо вооружиться генератором сигналов, каким-либо измерителем уровня выходного сигнала с высоким внутренним сопротивлением, и определить добротность экспериментально.
К тому же на высоких частотах возможно проявление влияния добротности конденсатора, особенно если он окажется варикапом, хотя современные недорогие керамические изделия (например, фирмы Murata) имеют значение параметра добротности - не менее 800.

Нарисуем табличку с расчётом фильтра для низкочастотных приложений.

ТАБЛИЦА ДЛЯ LC- РЕЗОНАНСНОГО (ПОЛОСОВОГО) ФИЛЬТРА ДЛЯ НЧ.

   Индуктивность катушки L1 (миллигенри)  
     
   Активное сопротивление катушки R (Ом)        
   Ёмкость конденсатора С1 (нФ)        
  
   Резонансная частота фильтра Fр. (Гц)         
   Добротность фильтра Q         
   Характеристическое сопротивление ρ (Ом)         
   Полоса пропускания фильтра (Гц)         


Если параметр активного сопротивления катушки R опущен, его значение принимается равным 200 омам.
Необходимо отметить, что все полученные в таблице данные верны и для последовательного колебательного контура. При этом, если мы хотим использовать свойства контура полностью, т. е. получить острую резонансную кривую, соответствующую конструктивной добротности, то параллельный контур надо нагружать слабо, выбирая R1 и Rн намного больше Rо (на практике десятки кОм), для последовательного же контура, сопротивление генератора R1 наоборот должно быть на порядок меньше характеристического сопротивления ρ.

Теперь, нарисуем таблицу для расчёта высокочастотных резонансных контуров.
Тут на добротность влияет не только активное сопротивление катушек, но и другие факторы, такие как - потери в ферритах, наличие экрана, эффект близости витков и т. д. Поэтому вводить этот параметр в качестве входного я не стану - будем считать, что добротность катушки вы измерили, или подсмотрели в документации на готовые катушки. Естественным образом значение добротности катушки должно измеряться на резонансной частоте контура, ввиду прямой зависимости этой величины от рабочей частоты (Q=2πfL/R).
К тому же я добавлю сюда параметр добротности конденсатора, особенно актуальный в случае применения варикапов.
По умолчанию (для желающих оставить эти параметры без внимания), добротность катушки примем равной 100, конденсатора - 1000, а для испытывающих стремление измерить эти параметры в радиолюбительских условиях, рекомендую посетить страницу   ссылка на страницу .

ТАБЛИЦА ДЛЯ LC- РЕЗОНАНСНОГО (ПОЛОСОВОГО) ФИЛЬТРА ДЛЯ ВЧ.

   Индуктивность катушки L1 (микрогенри)  
     
   Добротность катушки Q1         
   Ёмкость конденсатора С1 (пф)        
   Добротность конденсатора Q2         
  
   Резонансная частота фильтра Fр. (кГц)         
   Добротность фильтра Q         
   Характеристическое сопротивление ρ (Ом)         
   Сопротивление контура на резонансной частоте (Ом)         
   Полоса пропускания фильтра (кГц)         


Теперь плавно переходим к LC фильтрам верхних и нижних частот (ФВЧ и ФНЧ).

Рис.2

Крутизна спада АЧХ этих фильтров в полосе подавления - 12 дБ/октаву, коэффициент передачи в полосе пропускания К=1 при R1 << ρ << Rн, где R1 - внутреннее сопротивление генератора, Rн - сопротивление нагрузки, а ρ - характеристическое сопротивление фильтра.
Однако наилучшие параметры, с точки зрения равномерности АЧХ и передачи максимальной мощности в нагрузку, обеспечиваются при R1=Rн=ρ. В этом случае фильтр является согласованным, правда коэффициент передачи в полосе пропускания становится равным К=0.5.
Ну да ладно, ближе к делу.

ТАБЛИЦА LC- ФИЛЬТРОВ ВЕРХНИХ и НИЖНИХ ЧАСТОТ.

   Характеристика фильтра      
   Индуктивность катушки L1         
   Ёмкость конденсатора С1         
  
   Частота среза фильтра Fср.            
   Характеристическое сопротивление ρ (Ом)         

А если надо рассчитать L и C при известных значениях Fср и ρ ?   Не вопрос,

ТАБЛИЦА РАСЧЁТА ЭЛЕМЕНТОВ LC- ФИЛЬТРОВ ВЕРХНИХ и НИЖНИХ ЧАСТОТ.

   Характеристика фильтра      
   Частота среза фильтра Fср.         
   Характеристическое сопротивление ρ (Ом)         
  
   Индуктивность катушки L1            
   Ёмкость конденсатора С1            


Данные ФВЧ и ФНЧ называются Г-образными.
Для получения более крутых скатов АЧХ используют два или более Г-образных звеньев, соединяя их последовательно, чтобы образовать Т-образное звено (на Рис.3 сверху), или П-образное звено (на Рис.3 снизу). При этом получаются ФНЧ третьего порядка. Обычно, ввиду меньшего количества катушек, предпочитают П-образные звенья.

Рис.3

ФВЧ конструируют подобным же образом, лишь катушки заменяются конденсаторами, а конденсаторы - катушками.

Широкополосные полосовые LC - фильтры получают каскадным соединением ФНЧ и ФВЧ.

Что касается многозвенных LC-фильтров высоких порядков, то более грамотным решением (по сравнению с последовательным соединением фильтров низших порядков) будет построение подобных устройств с использованием полиномов товарищей Чебышева или Баттерворта.

Именно такие фильтры 3-го, 5-го и 7-го порядков мы и рассмотрим на следующей странице.




 

Главная страница | Наши разработки | Полезные схемы | Это нужно знать | Вопросы-ответы | Весёлый перекур
© 2017 Vpayaem.ru   All Rights Reserved